
Contextual Parameter Generation for Knowledge Graph Link Prediction

George Stoica*, Otilia Stretcu*, Emmanouil Antonios Platanios*,
Tom M. Mitchell, Barnabás Póczos

Carnegie Mellon University
5000 Forbes Ave,

Pittsburgh, Pennsylvania 15213
{gis, ostretcu, e.a.platanios,tom.mitchell,bapoczos}@cs.cmu.edu

Abstract

We consider the task of knowledge graph link prediction.
Given a question consisting of a source entity and a rela-
tion (e.g., Shakespeare and BornIn), the objective is to
predict the most likely answer entity (e.g., England). Re-
cent approaches tackle this problem by learning entity and
relation embeddings. However, they often constrain the rela-
tionship between these embeddings to be additive (i.e., the
embeddings are concatenated and then processed by a se-
quence of linear functions and element-wise non-linearities).
We show that this type of interaction significantly limits rep-
resentational power. For example, such models cannot han-
dle cases where a different projection of the source entity is
used for each relation. We propose to use contextual param-
eter generation to address this limitation. More specifically,
we treat relations as the context in which source entities are
processed to produce predictions, by using relation embed-
dings to generate the parameters of a model operating over
source entity embeddings. This allows models to represent
more complex interactions between entities and relations. We
apply our method on two existing link prediction methods,
including the current state-of-the-art, resulting in significant
performance gains and establishing a new state-of-the-art for
this task. These gains are achieved while also reducing con-
vergence time by up to 28 times.

1 Introduction
Many real-world applications ranging from search en-
gines to conversational agents such as Amazon’s Alexa
and Apple’s Siri rely on the ability to infer new facts
from existing knowledge. A common means of repre-
senting such knowledge is via knowledge graphs (KGs).
In KGs, facts are represented by entity-relation-entity
triples, (es, r, et), which encode factual relationships be-
tween graph nodes. An example triple of this form could
be (Shakespeare, BornIn, England), which specifies
that Shakespeare was born in England. For each triple, we
refer to es and et as the source and target entities, respec-
tively, and we refer to r as the relation between es and et.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

* Equal author contribution.

SOURCE
ENTITY

RELATION

Embeddings
Parameters

TARGET
ENTITY

Probability
Distribu�on

Trainable vectors
Feature mapping func�on (convolu�on for ConvE)
Answer projec�on func�on (linear layer for ConvE)

Computed vectors

Embeddings

SOURCE
ENTITY

RELATION Parameter
Generator

Parameters

TARGET
ENTITY

Probability
Distribu�on

PREVIOUSAPPROACH

LEGEND

PROPOSEDAPPROACH

Figure 1: Overview of how our approach differs from past
work. The relation is used to generate the parameters of the
model that is used to transform the source entity.

A collection of triples is called a knowledge graph because
the triples implicitly form a graph where entities correspond
to graph nodes and relations to graph edges. There are many
existing large-scale KGs, both automatically generated (e.g.,
the never-ending language learning system by Mitchell et
al. (2018)) and human-curated (e.g., Freebase by Bollacker
et al. (2008)). However, an important limitation is that they
are often incomplete. For example, Freebase (Bollacker et
al. 2008) is missing the place of birth for 71% of the peo-
ple that exist in its graph (West et al. 2014). Despite this
deficiency, many missing links are inferrable from existing
knowledge in the KG. For instance, knowing who Shake-
speare’s parents were and where they lived could be used

to infer the most likely place where Shakespeare was born.
This motivates the task of link prediction, which is typi-
cally formulated as either question answering—inferring an-
swers to questions of the form (es, r, ?)—or fact checking—
evaluating the validity for statements of the form (es, r, et).
While each formulation offers a different approach to link
prediction, question answering can be thought of as a gener-
alization of fact checking. This is because, in the worst case,
answers can be produced by enumerating all possible enti-
ties and applying a fact checking model on each. Thus, in
this paper we propose a novel method to tackle link predic-
tion using the question answering formulation, although our
core contribution can also be applied to fact-checking meth-
ods. The proposed method consistently outperforms the cur-
rent state-of-the-art across multiple datasets.

The study of link prediction has gathered substantial at-
tention in the past years, and many methods have been pro-
posed to solve it. A significant boost in performance was ob-
served when recent methods such as ConvE (Dettmers et al.
2018), MINERVA (Das et al. 2018), or MultiHop-KG (Lin,
Socher, and Xiong 2018) combined KGs with the expres-
sive power of neural networks. All these approaches consist
of learning finite dimensional continuous vector represen-
tations (i.e., embeddings) for both the entities and the re-
lations in the KG, and then processing them (e.g., through
a neural network) in order to infer missing links in the
KG. Different models process these embeddings through po-
tentially very different types of architectures (e.g., convo-
lutional networks or recurrent neural networks). However,
they all have something in common: Entity and relation rep-
resentations are combined in a way that only allows for ad-
ditive interactions between them (e.g., they may be concate-
nated and then projected using a linear transformation). In
this work, we show how this type of interaction between
entities and relations significantly limits expressive power,
and we propose a novel method to address this limitation.
More specifically, we propose to treat the relations as the
context in which source entities are interpreted and trans-
formed to produce target entities. Concretely, we use the re-
lation embeddings to generate the parameters of a model op-
erating over entity embeddings, which then outputs a distri-
bution over correct answers. Figure 1 shows an illustration
of our method. The proposed method, CoPER (Contextual
Parameters from Embedded Relations), has the following
desirable properties:

1. Abstract: It can be used to enhance the representational
power of several existing link prediction methods.

2. Simple: It can be formulated as a simple transformation
for qualifying models, that can be implemented with only
about 10 lines of code.

3. Scalable: It speeds up convergence by up to 28×.
4. State-of-the-Art: It outperforms competing methods by

a significant margin on several established datasets.

2 Related Work
Existing approaches to perform link prediction can be clas-
sified in two categories: single-hop and multi-hop methods.

Single-Hop Methods. Given a question, single-hop meth-
ods predict answers by learning source entity and relation
embeddings, and jointly transforming them to an answer en-
tity using a fixed amount of computation. TransE (Bordes
et al. 2013) produces answer entity embeddings by adding
the relation and source entity embeddings together. DistMult
(Yang et al. 2015) extends TransE by instead multiplying the
source entity and relation embeddings element-wise. Com-
plEx (Trouillon et al. 2016) boosts DistMult’s performance
by extending the model to use complex numbers instead of
real numbers, allowing for more expressive relationships be-
tween entities and relations. TransR (Lin et al. 2015) infers
answer entity embeddings by first projecting the source and
potential answer entity embeddings to relation space via the
query relation, and then performing TransE on the resul-
tants. CTransR (Lin et al. 2015) extends TransR by clus-
tering distinct source and target entity pairs from triples into
groups and learning distinct relation vectors for each group,
thereby sharing information between group-correlated rela-
tions. TransD (Ji et al. 2015) develops on CTransR by ac-
counting for entity types, resulting in greater method flexi-
bility. DistMult, TransR, and CTransR empirically illustrate
the benefits of multiplicative interactions between entities
and relations over additive ones, and serve as an inspira-
tion for our work. The current state-of-the-art model, ConvE
(Dettmers et al. 2018), estimates a distribution over possible
answers by first concatenating the source entity and relation
embeddings and then feeding them through a convolutional
neural network. Similar to TransE, the concatenation of en-
tity and relation embeddings only allows for an additive in-
teraction between the two. As we describe in Section 3.1,
this significantly limits the expressive power of the model.

Multi-Hop Methods. Multi-hop approaches determine
answers by finding paths connecting source entities to target
entities, and consist mostly of path ranking methods (Lao,
Mitchell, and Cohen 2011; Gardner et al. 2013) and neu-
ral models (Neelakantan, Roth, and McCallum 2015; Guu,
Miller, and Liang 2015; Toutanova et al. 2016; Das et al.
2018; Lin, Socher, and Xiong 2018). Given a question of the
form (es, r, ?), these methods aim to find sequences of rela-
tions (e.g., (r1, r2, r3)) that start at es and when composed,
are semantically equivalent to r. NeuralLP (Yang, Yang,
and Cohen 2017) learns end-to-end differentiable relation
paths between source entities and targets. Similarly, NTP-λ
(Rocktäschel and Riedel 2017) proposes an end-to-end dif-
ferentiable backward chaining model to learn effective se-
quences between source entities and answers. MINERVA
(Das et al. 2018) proposes a history-dependent reinforce-
ment learning approach to KG link prediction. MultiHop-
KG (Lin, Socher, and Xiong 2018) extends MINERVA by
employing a pretrained single-hop method to shape the re-
wards used by MINERVA, which allows the model to use a
more granular and informative reward policy when travers-
ing paths. Both these latter approaches process entities and
relations additively by concatenating and transforming them
to obtain the next path entity. Similar to their single-hop
counterparts, this limits their expressivity.

3 Background
Before describing our proposed method, we introduce the
notation that we will be using for the remainder of this pa-
per. Let es, r, and et denote one-hot encoded representa-
tions of the source entity, relation, and target entity of a KG
triple. A common approach to learning abstract representa-
tions of entities and relations is to learn vector embeddings.
This provides for a simple yet effective method of sharing
information. The transformation from one-hot encodings to
vector embeddings is modeled as follows. LetNe andNr de-
note the total number of distinct entities and relations in the
KG, respectively. Given a set of entities, E = {ei}Nei=1, and
a set of relations R = {ri}Nri=1, we define the following em-
bedding matrices: E ∈ RDe×Ne and R ∈ RDr×Nr , where
De and Dr correspond to the entity and relation embedding
sizes, respectively. E and R are both trainable parameters.
Given a question of the form (es, r, ?), the corresponding
source entity and relation embeddings are es = Ees and
r = Rr, where es ∈ RDe and r ∈ RDr , respectively.

Multiple existing single-hop link prediction methods (as
well as a single hop in multi-hop methods) can be described
in terms of the following abstract model:

es = Ees, (embedding) (1)
r = Rr, (embedding) (2)
z = hφ(es, r, ...), (merge) (3)
ans = fθ(z, ...), (prediction) (4)

where z is a latent representation of the merged entity and re-
lation embeddings. The merge is performed using the merg-
ing function h, parameterized by φ. Then, the answer ans
is predicted from z using the prediction function f , which
is parameterized by θ. Depending on the model, ans can
be the predicted embedding of the target entity, êt, a proba-
bility distribution over target entities, or the probability that
the fact (es, r, et) is true. Note that the functions hφ and fθ
may also take other model-dependent arguments, such as et,
which we denote through “...”. In fact, in recent methods that
have shown improved link prediction accuracies (ConvE,
MINERVA, Multihop-KG), fθ and hφ are neural networks
consisting of convolution and/or recurrent layers. Figure 1,
top, shows an illustration of this abstract architecture.

While, multiple existing link prediction methods fit under
this formulation, we will use ConvE (Dettmers et al. 2018)
as a running example, since it is both the current state-of-the-
art and one of the baseline methods used in our experiments.
In ConvE, we have:

z = Conv2D(Reshape([es; r])), (merge) (5)
êt = fθ(z), (prediction) (6)

where [es; r] ∈ RDe+Dr represents the result of stacking
the entity and relation embeddings together, followed by a
reshape into a W ×H rectangular matrix, where W and H
are model hyperparameters such thatWH = De+Dr. This
matrix is then passed through a 2D convolution layer to ob-
tain the merged representation z. The prediction function fθ
is defined as a linear layer, where θ denotes its weight matrix
and bias vector combined, followed by a dropout layer. An

e0

r1

r1
r0

r0e1 e3

e2

Figure 2: Toy example that cannot be modeled by additive
interactions between entities and relations.

illustration of the ConvE model is shown in the top left quad-
rant of Figure 3. For further details, we refer the reader to the
work of Dettmers et al. (2018). Given that hφ may also in-
clude other entity-relation merge operations, more complex
models such as MINERVA or MultiHop-KG can also be ex-
pressed in terms of this abstraction.

3.1 Limited Expressive Power
Most existing neural methods consist of the following steps:
(i) learn entity and relation embeddings, (ii) concatenate the
source entity and relation embeddings, and (iii) perform a
sequence of linear transformations and element-wise non-
linear operations on them (as shown in equations 1-4), in
order to obtain the target entities. We now use an example
to explain why this only explicitly allows for additive inter-
actions between the source entity and relation, and why this
is significantly limiting the model’s expressive power. Con-
sider a simple merging function where the source entity and
relation are first concatenated into a single vector as [es; r],
and then projected through a linear layer:

hφ(es, r) = φ · [es; r], (7)

where φ ∈ RDz×(De+Dr) andDz is the size of z. If we refer
to the first De columns of φ as φe, and the last Dr columns
as φr (i.e., φ = [φe;φr]), then we can write hφ(es, r) =
φses +φrr. Note that, in this case the elements of the entity
embedding es and the relation embedding r only interact in
an additive way (i.e., the output z is a linear combination
of the elements in es and r and it does not support more
complex interactions, such as multiplicative or polynomial).
The same is true for the merging function in ConvE through
Conv2D (only some of the elements of φ are shared), as well
as the merging functions of MINERVA and Multihop-KG
(further explained in Section 4.3). The main implication of
this is that relations cannot influence the projection matrices
used to transform the entities.

Let us demonstrate this important limitation by consider-
ing the example shown in Figure 2, illustrating 4 KG facts:
(e0,r0,e2), (e0,r1,e3), (e1,r0,e3), (e1,r1,e2). Sup-
pose we want to encode these facts using a model in the
form of Equation 7:

e2 = φee0 + φrr0, (8)
e3 = φee0 + φrr1, (9)
e3 = φee1 + φrr0, (10)
e2 = φee1 + φrr1. (11)

Subtracting (9) from (8), and (11) from (10), we have that:

(e2 − e3) = φr(r0 − r1), (12)
(e3 − e2) = φr(r0 − r1), (13)

which leads to a degenerate solution where (i) e3 = e2, and
(ii) φr = 0 or r0 = r1. Note that if instead we subtract (10)
from (8), and (11) from (9), we achieve similar degenerate
solutions that: (i) e2 = e3, and (ii) φe = 0 or e1 = e0. This
implies that additive models cannot handle this toy example.

While this is a toy example, it illustrates a more general
problem. For instance, consider a case where we want to
learn a different expert model for each relation. This means
that given a source entity and relation, the relation deter-
mines which expert to use when processing the source entity.
This example is important because related work in other ar-
eas has shown that mixtures of experts—our toy example is
in fact a very simple form of a mixture of experts—can re-
sult in significant performance gains (Lengerich, Maas, and
Potts 2018). Methods that combine entities and relations ad-
ditively cannot learn such a mixtures of experts. Ideally, we
want our model to be expressive enough such that it can
learn functions that are conditional on the relation, such as
the above mixture of experts example. That example is im-
portant because learning a separate model for each relation
may sometimes be impossible. A common pattern for cer-
tain KGs is that for some relations we have a lot of training
data, but for most we have very little. In such cases, we want
to be able to leverage the fact that many relations are sim-
ilar by sharing information among them. Note also that in-
creased expressivity alone is not sufficient as it can result in
overfitting. We propose to use contextual parameter gener-
ation, originally proposed in the context of neural machine
translation by Platanios et al. (2018), which allows us to in-
crease expressivity in a manner that, as we show using an
extensive empirical evaluation, is useful to the link predic-
tion problem. Importantly, as we show in Section 4.2 the
proposed approach is able to handle the aforementioned toy
example as well as more general mixtures of experts.

4 Proposed Method
In this section, we propose a new approach that addresses
the limitations regarding additive interactions raised in the
previous section. Our method, termed CoPER — Contex-
tual Parameters from Embedded Relations, can be used to
enhance multiple existing additive link prediction methods,
by enabling them to learn more expressive relationships be-
tween entities and relations. At the core of CoPER lies
the key idea that relations define how source entities are
processed in order to produce answer entities. Specifically,
when answering a question (es, r, ?), the target entity et can
be obtained through a transformation of the source entity es,
and the parameters of this transformation are determined by
the relation r.

In Figure 1, we show how a baseline model, expressed
using Equations 1-4, can be transformed using CoPER. In
this baseline model, the embeddings of es and r are merged
through the additive operation h (e.g., concatenation fol-
lowed by convolution), and then transformed using f (e.g., a

neural network) whose parameters are learned (e.g., through
backpropagation). In CoPER, operation h is only applied to
es, while r is now used to generate the parameters of f .
Thus, the parameters of f are no longer learned directly, but
are rather the output of a new model component—the con-
textual parameter generator (CPG). In the following sec-
tion, we propose and compare different potential architec-
tures for the CPG module. We then explain how the pro-
posed modification can have a large impact in the kinds of
KG relationships our models can represent.

4.1 Parameter Generator Network
The contextual parameter generation (CPG) module is a
function that takes as input a relation r and outputs the pa-
rameters θ of some other function f . Let g : {1, 2, ..., Nr} →
RDθ be our parameter generation function, where Nr is the
number of relations in the KG, and θ ∈ RDθ . We now
present three simple functional forms for g that we also use
for our experiments.

Parameter Lookup Table. The simplest approach is to
output an entirely different θ for each relation. This results
in the following form:

glookup(r) = Wlookupr, (14)

where r here is a one-hot encoded vector representation
of the relation, and Wlookup ∈ RDθ×Nr is the only learn-
able parameter of glookup. Interestingly, this is comparable to
DistMult and TransR, as each of these methods also uses
relations to define distinct mappings over entity embed-
dings. However, the problem with this simple formulation
is that information sharing across relations can only happen
through the shared entity embeddings. This makes the model
prone to overfitting, especially for relations which have lim-
ited training data. Moreover, in certain KGs, many of the re-
lations may be similar (e.g., bornIn and livesIn), and
it may be beneficial for them to share information. This mo-
tivates a different approach for generating parameters.

Linear Projection. Instead of using one-hot representa-
tions for the relations, we can instead learn embeddings:

glinear(r) = WlinearRr + b, (15)

where we use the embedding lookup equation, Wlinear ∈
RDθ×Dr , bias term b ∈ RDθ , Dr is the relation embedding
size, and both Wlinear and R, are trainable model parame-
ters. Intuitively, the learned relation embeddings represent a
linear combination of Dr different values for θ, allowing for
shared information between relations.

Multi-Layer Perceptron. Most of our experiments are
performed using glinear, with which we achieve state-of-the-
art results. However, we observed that glinear may underper-
form in small datasets. We argue that the most likely rea-
son is due to Wlinear becoming too big relative to the origi-
nal number of parameters. This is because, if we originally
had Dθ trainable variables, glinear now has Dθ ×Dr param-
eters, which is significantly larger. Limiting the value of Dr

is not necessarily a solution as a small Dr can significantly
constrain the capacity of our model. We therefore propose

Parameter
Generator

Parameter
Generator

LSTM

CURRENT
ENTITY

PREVIOUS
RELATION

QUESTION
RELATION

NEXT
ENTITY

Probability
Distribu�on

Predicted
Embedding

Note that this represents a single "hop"
of a mul�-hop reasoning process.

dot product
with en�ty
embeddings

matrix

MINERVA
CoPER-MINERVA

ConvE
CoPER-ConvE

Parameter
Generator

MLP

LSTM

CURRENT
ENTITY

PREVIOUS
RELATION

QUESTION
RELATION

NEXT
ENTITY

Probability
Distribu�on

Predicted
Embedding

dot product
with en�ty
embeddings

matrix

MLP

SOURCE
ENTITY

QUESTION
RELATION

Features
Dropout

stack
and

reshape

convolve project

Embedding
Dropout

Projec�on
Dropout

TARGET
ENTITY

Probability
Distribu�on

dot product
with en�ty
embeddings

matrix

SOURCE
ENTITY

QUESTION
RELATION

Features
Dropout

reshape convolve project

Embedding
Dropout

Projec�on
Dropout

TARGET
ENTITY

Probability
Distribu�on

dot product
with en�ty
embeddings

matrix

HiddenState

Hidden State

Figure 3: Overview of ConvE (top left), MINERVA (top right) and their CoPER-powered versions (bottom).

a third variant of the generator network using a multi-layer
perceptron:

gMLP(r) = MLP(Rr). (16)

This can be thought of as a low-rank approximation to glinear.

These are only three possible proposals for the parameter
generator network and, as we show next, even a simple net-
work such as glinear already significantly increases represen-
tational power. Note however, that the idea behind CoPER is
more general and can be extended to more complex architec-
tures. Moreover, in contrast to CTransR and TransD which
also learn correlations between relations, CPG learns unre-
stricted relationships between them: based on the choice of
CPG module, the network can learn any arbitrary relation in-
teractions. Furthermore, its abstract design enables it to fully
benefit from the expressive power of neural networks.

4.2 Enhanced Expressive Power
Through the parameter generation component, CoPER en-
ables link prediction methods to directly model more com-
plex interactions between the entity and relation embed-
dings. A CPG module as simple as glinear, combined with any
typical neural network architecture for fθ (from a single lin-
ear layer to many complex layers followed by element-wise
non-linearities) allows the model to represent multiplicative
interactions between source entities and relations.

For ease of explanation, we will illustrate this increase
in representation power with a simple form of hφ and fθ,
but it is easy to see that more complex architectures can
only increase the expressive power further. According to the
CoPER formulation, hφ now only operates on es, prepro-
cessing the source entity embedding before passing through
the predictor function fθ. For simplicity, we can assume no

preprocessing is necessary, so hφ(es) = es, and that f is a
simple linear projection, fθ(x) = θx. The parameters θ are
given by θ = glinear(r) = WRr + b = Wr + b. Thus:

êt = fθ(hφ(es)) = fθ(es) = θes = (Wr + b)es. (17)

This result shows that the relation and entity embedding now
interact in a multiplicative way, which means the relation it-
self affects the weights with which we multiply the entity
embedding. This is more expressive than an additive inter-
action, as it now allows us to represent dependencies such
as conditionals (i.e., if statements), mixtures of experts, and
even the toy example we present in Figure 2.

Toy Example. Going back to our toy example that addi-
tive interactions cannot represent, we now show that a CPG
module as simple as glinear or glookup can encode this KG ex-
ample. Applying the predictor derived in Equation 17 to the
KG in Figure 2, the following equations must hold for the
toy example to be representable by the model:

e2 = (Wr0 + b)e0, (18)
e3 = (Wr0 + b)e1, (19)
e2 = (Wr1 + b)e1, (20)
e3 = (Wr1 + b)e0. (21)

Subtracting (18) from (19), and (20) from (21), we have:

e3 − e2 = (Wr0 + b)(e1 − e0), (22)
e3 − e2 = (Wr1 + b)(e0 − e1). (23)

Avoiding the degenerate solution where e0 = e1, we have:

W(e1 − e0)(r0 + r1) + 2b(e1 − e0) = 0. (24)

This equation has an infinite number of solutions. Note that
although we showed here that CPG leads to multiplicative

interactions between es and r for a particular choice of
fθ(x) = θx, the conclusions will stand for most neural net-
work architectures, from multilayer perceprons to convolu-
tional to recurrent neural networks, since they usually in-
volve such a projection step on the inputs.

4.3 CoPER and State-of-the-Art Models
We discussed how CoPER can generally be used to extend
link prediction models with additive interactions. We will
now show how it can be applied to two specific models,
ConvE and MINERVA, which are representative for the two
main lines of recent neural link prediction methods: single-
hop and multi-hop methods. While these models may have
distinct complex architectures with multiple types of neural
network layers, each integrates entities and relations addi-
tively in several key components of their networks. In place
of each of these interactions, we substitute our CPG module
to alleviate the limitations induced by additive integration.
Figure 3 shows a parallel between the original ConvE and
MINERVA, and their CoPER-enhanced versions, CoPER-
ConvE and CoPER-MINERVA, respectively.

ConvE. The original ConvE model can be described in
terms of our abstract framework as shown in Equations 5-
6. In CoPER-ConvE, the first preprocessing steps in the
pipeline (reshape, convolution) are only applied to the en-
tity embedding, while the relation is used to generate the
parameters of the projection layer:

z = Conv2D(Reshape(es)),

θ = g(r),

êt = fθ(z) = θ1 + θ2:Dθz,

where θ = [θ1; θ2] is the parameter vector produced by the
parameter generator.

MINERVA. MINERVA is a deterministic RL-based
multi-hop question-answering agent, which means that it
will answer the question (es, r, ?) by finding a path in the
graph that connects es with the predicted answer êt. The
model defines states as the entities in the KG, and actions as
tuples (r, e) consisting of an outgoing relation and its des-
tination entity, specifying a hop to a neighboring node in
the KG. Given a question (es, rq, et), MINERVA traverses
the KG along its relations from es to the most likely target
entity et. Each step along the graph path iteratively accumu-
lates a history of entities and relations visited, which is ag-
gregated together through and then stored in a Long Short-
Term Memory (LSTM) network (Hochreiter and Schmidhu-
ber 1997), as illustrated in Figure 3 (right). The hidden state
of the LSTM is updated as follows:

hi = LSTM(hi−1, [ei; ri−1]), (merge)

where hi denotes the accumulated history representation at
the ith time step, hi−1 is the history representation at the
previous step and is the hidden state of the LSTM, ri−1
denotes the embedding representation of the relation taken
in the previous step leading to state ei (represented by the
embedding ei), and [;] represents vector concatenation. Ad-
ditionally, [ei; ri−1] denotes the LSTM input. Because the

LSTM module consists of a series of input projections, ei
and ri−1 are additively incorporated into the agent’s history.

At every time step, once the traversal history has been ac-
cumulated, the agent next determines the subsequent action
to take as follows:

oi = MLP([hi; ei; rq]), (merge) (25)
aj = Categorical(Aioi), (prediction) (26)

where Ai denotes the embedding representations of each
available action from ei, oi represents the Multi-Layer Per-
ception (MLP) output, Categorical denotes a categorical
distribution decision function—such as a network policy—
which operates over action distribution logits given by Aioi,
and aj is the selected action. Since an action is a tuple (r, e)
as explained above, we represent aj as the concatenation of
the respective relation embedding and an entity embedding.
Ai denotes then the matrix containing vector representations
of all available actions from each state. Importantly, we ob-
serve that the entity and relation embeddings are concate-
nated as input to the MLP, which also induces an additive
interaction between them in this component. Thus, in both
components where entity and relation information is pro-
cessed in MINERVA, it is done additively. As illustrated by
our toy example, this limits the expressivity of the network.

In CoPER-MINERVA, we replace these additive steps
with parameter generators, as illustrated in the right of Fig-
ure 3. In the fist case, the embedding of the previous relation
in a step, ri−1, is used as input to a parameter generator that
outputs the parameters of the LSTM component. In the sec-
ond case, the query relation r embedding is used to generate
the parameters of the MLP, which operates over the step his-
tory and current entity representations. The rest of the model
remains unchanged.

5 Experiments
In this section, we empirically evaluate the performance of
CoPER on several established link-prediction datasets.

Datasets. We adopt the following datasets used in prior
literature: Unified Medical Language Systems (UMLS)
(Kok and Domingos 2007), Alyawarra Kinship, WN18RR
(Dettmers et al. 2018), FB15k-237 (Toutanova and Chen
2015), and NELL-995 (Xiong, Hoang, and Wang 2017).
Table 2 displays summary statistics for each dataset. To
keep our train/validation/test dataset partitions consistent
with those of prior literature and ensure fair comparisons,
we use the published datasets from Das et al. (2018) and
Lin, Socher, and Xiong (2018). Similar to prior work, we
augment our training data with inverse relations (for each
example (es, r, et) we introduce (et, r

−1, es)).

Metrics. We report results for two metrics used through-
out prior work: Hits@k and Mean Reciprocal Rank (MRR).
Both assess how a model ranks the correct answer compared
to all other possible answers. Hits@k, also known as recall-
at-k, is defined as the proportion of times the correct an-
swer is ranked among the top-k answers, according to the
probabilities assigned by the model. Similar to prior work,
we report the average Hits@1 and Hits@10 over the test

Dataset Metric Models
DistMult ComplEx NeuralLP NTP-λ MINERVA MultiHop-KG ConvE CoPER-MINERVA CoPER-ConvE

UMLS
Hits@1 82.1 82.3 64.3 84.3 75.3 90.2 92.89 77.76† 95.46‡
Hits@10 96.7 99.5 96.2 100.0 96.7 99.2 99.70 97.43† 99.70‡

MRR 86.8 89.4 77.8 91.2 84.1 94.0 95.35 85.44† 97.08‡

Kinship
Hits@1 48.7 75.4 47.5 75.9 60.5 78.9 74.21 66.20† 83.62†
Hits@10 90.4 98.0 91.2 87.8 92.4 98.2 97.86 94.23† 98.42†
MRR 61.4 83.8 61.9 79.3 72.0 86.5 83.04 76.00† 89.52†

WN18RR
Hits@1 43.1 41.0 37.6 – 41.3 41.8 41.86 42.66† 44.05†
Hits@10 52.4 51.0 65.7 – 51.3 51.7 52.17 50.99† 56.12†

MRR 46.2 44.0 46.3 – 44.8 45.0 45.19 46.51† 48.33†

FB15k237
Hits@1 32.4 15.8 16.6 – 22.3 32.7 30.30 29.49† 32.18†

Hits@10 60.0 42.8 34.8 – 44.9 56.4 60.83 50.39† 62.92†
MRR 41.7 24.7 22.7 – 29.2 40.7 40.51 36.51† 42.56†

NELL-995
Hits@1 55.2 64.3 – – 63.96 65.6 67.04 65.52† 72.15†
Hits@10 78.3 86.0 – – 82.35 84.4 87.96 83.24† 88.35†
MRR 64.1 72.6 – – 70.97 72.7 75.42 72.46† 78.68†

Table 1: Results for various link prediction models. Results for ConvE, MINERVA, CoPER-ConvE and CoPER-MINERVA
are reported according to our own experiments. The remainder are taken from Das et al. (2018). All numbers are expressed
as percentages. † denotes experiments performed using glinear, and ‡ denotes those performed using gMLP. “–” denotes missing
results from the respective publications. Note that for MINERVA, we used the implementation provided by Lin, Socher, and
Xiong (2018), and report our results with the provided implementation for fair comparison with our CoPER extension.

Dataset # Train Ne Nr N̄a d̄

Kinship 8,544 104 25 6.14 82.15
UMLS 5,216 135 46 7.83 26.59

FB15k237 272,115 14,541 237 3.03 17.87
WN18RR 86,835 40,945 11 1.41 2.19
NELL-995 154,213 75,492 200 3.57 4.07

Table 2: Dataset statistics. Here, # Train denotes the num-
ber of questions used for training, Ne the number of distinct
entities, Nr the number of distinct relations, N̄a the average
number of answers per question, and d̄ the average degree of
the graph nodes in the dataset.

set. MRR is defined as the average value of the reciprocated
rank of the correct answer for each test instance. Therefore,
MRR is a measure of the overall quality of a model’s pre-
dictions. Note that this evaluation method is also used in
ConvE, MINERVA, and MultiHop-KG.

Models. We evaluate CoPER-ConvE and CoPER-
MINERVA against their base models, ConvE and MIN-
ERVA, and multiple other link prediction methods. To
ensure a fair comparison between CoPER-ConvE and its
unaltered baseline, we re-implement ConvE in our environ-
ment, and retain the hyperparameters originally reported by
Dettmers et al. (2018). In fact, our implementation either
matches or improves upon the previously published results
(possibly due to the use of negative sampling, which we
cover in our supplemental material. This can be accessed
from Section 6). For CoPER-MINERVA, we construct our
CoPER framework within the MINERVA implementation
provided by Lin, Socher, and Xiong (2018). For both
CoPER extensions, we vary the relation embedding size

Kinship UMLS FB15k237 WN18RR NELL-995
0.0

0.2

0.4

0.6

0.8

1.0
R

el
a

ti
ve

ti
m

e
ConvE

0.091
0.046

0.210

0.035

0.350

Relative Time

Figure 4: Time required for CoPER-ConvE to obtain its best
performance on each dataset, as a fraction of the time it takes
ConvE to achieve equivalent performance.

(originally 200) based on the number of relations in each
dataset, which stems from our observations that datasets
with few relations (e.g., Kinship or WN18RR) perform
better with smaller embeddings. We choose the dropout
parameters by performing a grid search between [0,1] based
on the validation set Hits@1. Regarding the parameter
generation module, we perform experiments using both
glinear and gMLP. For the MLP, we use a single hidden
layer with a ReLU activation and chose the number of
hidden units by also performing a grid search between.
We train our models using the binary cross-entropy loss
function. For each positive training example, we sample
10 negatives as described in our supplemental material
(reached from Section 6), and use a label smoothing factor
of 0.1. All hyperparameter values and CPG architectures
utilized in our experiments can be found in our repository

at https://github.com/otiliastr/coper. We
conduct all our experiments on a single Nvidia TitanX GPU.

Results. Our overall performance results are reported
in Table 1. We observe that CoPER-ConvE outperforms
ConvE on all datasets, with up to +9.41% Hits@1 per-
formance gain over ConvE on Kinship. Moreover, we find
that CoPER-ConvE achieves superior performance over all
other existing methods on these datasets, often by a signif-
icant margin. Notably, we observe a +4.7% Hits@1 gain
for Kinship over the best existing method and a +4.09%
Hits@1 gain for NELL-995. To the best of our knowledge,
CoPER-ConvE establishes a new state-of-the-art.

We also examine the effect of CoPER on training time.
Since CoPER-ConvE is the version with the best results
across all datasets, we perform this analysis for ConvE and
CoPER-ConvE. Given that CoPER-ConvE consistently out-
performs ConvE in terms of Hits@1 we compare the num-
ber of iterations that each method requires to reach the
best Hits@1 value that ConvE achieves (e.g., we check
when both ConvE and CoPER reach 92.89% Hits@1 on
UMLS). Then we calculate the ratio: # iterations CoPER

iterations ConvE . For in-
stance, if a baseline model requires 10,000 steps to attain
best performance, while its CoPER variant takes 3,000 steps
to achieve identical performance, then our metric would be:
3,000
10,000 = 0.3. Analogously, this would denote a 1

0.3 = 3.33
factor of training speed gain. Our results, illustrated in Fig-
ure 4, show that CoPER-ConvE always requires much fewer
training iterations than ConvE, yielding a speedup of be-
tween 2.9 to 28.6 times.

Recall that in Section 4.1 we proposed to use glinear and
gMLP for the parameter generation network, instead of the
arguably more straightforward parameter lookup table. We
motivated this by suggesting that using glookup would more
likely result in overfitting, especially in cases where there
is too little training data per relation. To examine the im-
pact of relation information sharing through the contextual
parameter generator, we conduct an experiment comparing
our best performing glookup CoPER models against our best
performing glinear or gMLP methods. As glookup is an example
of a generator which does not enable this kind of informa-
tion sharing, pitting it against these latter generators enables
to explicitly analyze the importance of information sharing
through the generator across our benchmark datasets. Table
3 illustrates our results from these experiments, with the ad-
dition of ConvE for reference. In the table, glookup is refer-
enced by “CoPER-PL”, while “CoPER” on its own refers
to best performing glinear or gMLP model. glinear models are
referenced by †, while gMLP generators are denoted by ‡.
Note also that training CoPER-PL-ConvE on NELL-995 is
infeasible with our resource capabilities due to the memory
required to store the parameter lookup table and entity em-
beddings.

Based on these experiments, we observe a strong corre-
lation with performance disparity between CoPER-PL and
CoPER and dataset size and sparsity (please refer to Ta-
ble 2 for dataset statistics). These results suggest that as
datasets become smaller and denser, generator functions
such as glinear and gMLP are critical to maintaining strong

results. Moreover, while the performance discrepancy be-
tween CoPER-PL and CoPER is less pronounced in larger
and sparser datasets, we observe that sharing information
through the generator is still important to performance.

Dataset Metric Models
ConvE CoPER-PL-ConvE CoPER-ConvE

UMLS
Hits@1 92.89 73.82 95.46‡
Hits@10 99.70 99.09 99.70‡
MRR 95.35 85.17 97.08‡

Kinship
Hits@1 74.21 74.90 83.62†
Hits@10 97.86 96.63 98.42†
MRR 83.04 83.22 89.52†

WN18RR
Hits@1 41.86 44.10 44.05†

Hits@10 52.17 51.20 56.12†
MRR 45.19 46.63 48.33†

FB15k237
Hits@1 30.30 30.72 32.18†
Hits@10 60.83 60.04 62.92†
MRR 40.51 40.52 42.56†

NELL-995
Hits@1 67.04 N/A 72.15†
Hits@10 87.96 N/A 88.34†
MRR 75.42 N/A 78.68†

Table 3: Overview of our ablation testing performances
on our evaluation datasets. Results for ConvE, CoPER-PL-
ConvE (using a parameter lookup generator function), and
CoPER-ConvE are reported according to our own experi-
ments. All numbers are expressed as percentages. † refers to
glinear generators, while ‡ refers to gMLP generators. “N/A”
denotes experiments outside our computational resource ca-
pabilities.

We also compare CoPER with TransR and TransD, which
are simple models that allow for multiplicative interactions.
Further details and results can be found our supplemental
material under Section 6. CoPER consistently outperforms
the other methods. Finally, visualizations showcasing the re-
sultant relation similarities from FB15k-237 and NELL-995
our CoPER models learn can also be accessed by Section 6.

6 Supplementary Material
All supplementary material along with code to
reproduce our experiments can be accessed at:
https://github.com/otiliastr/coper.

7 Conclusion
We proposed CoPER, a novel framework that improves upon
the current state-of-the-art methods for the task of knowl-
edge graph link prediction. CoPER treats relations as the
context in which source entities are processed to predict
target entities. We showed how this significantly increases
the expressive power of link prediction models by allowing
them to represent multiplicative interactions between enti-
ties and relations. We also exhibited our approach’s flexibil-
ity by extending both a single-hop and a multi-hop link pre-
diction model, achieving new state-of-the-art performance
for this task, while significantly speeding up convergence
time over unaltered methods by up to 28×.

8 Acknowledgements
This material is based upon work supported by AFOSR
FA95501710218, NSF IIS1563887, DARPA/AFRL
FA87501720130 and Lockheed Martin. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not neces-
sarily reflect the views of the Air Force Office of Scientific
Research, the National Science Foundation, the Defense
Advanced Research Projects Agency, Air Force Research
Laboratory, or Lockheed Martin.

References
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Tay-
lor, J. 2008. Freebase: A Collaboratively Created Graph
Database for Structuring Human Knowledge. In Proceed-
ings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, 1247–1250. ACM.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Advances in Neural Information
Processing Systems, 2787–2795.
Das, R.; Dhuliawala, S.; Zaheer, M.; Vilnis, L.; Durugkar, I.;
Krishnamurthy, A.; Smola, A.; and McCallum, A. 2018. Go
for a walk and arrive at the answer: Reasoning over paths in
knowledge bases using reinforcement learning. In Interna-
tional Conference on Learning Representations (ICLR).
Dettmers, T.; Pasquale, M.; Pontus, S.; and Riedel, S. 2018.
Convolutional 2d knowledge graph embeddings. In Pro-
ceedings of the 32th AAAI Conference on Artificial Intelli-
gence, 1811–1818.
Gardner, M.; Talukdar, P. P.; Kisiel, B.; and Mitchell,
T. 2013. Improving learning and inference in a large
knowledge-base using latent syntactic cues. In Proceedings
of the 2013 Conference on Empirical Methods in Natural
Language Processing, 833–838.
Guu, K.; Miller, J.; and Liang, P. 2015. Traversing knowl-
edge graphs in vector space. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Process-
ing, 318–327.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput. 9(8):1735–1780.
Ji, G.; He, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Knowledge
graph embedding via dynamic mapping matrix. In Proceed-
ings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long
Papers), 687–696.
Kok, S., and Domingos, P. 2007. Statistical predicate inven-
tion. In Proceedings of the 24th International Conference
on Machine Learning, 433–440.
Lao, N.; Mitchell, T.; and Cohen, W. W. 2011. Random
walk inference and learning in a large scale knowledge base.
In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 529–539. Association for
Computational Linguistics.

Lengerich, B.; Maas, A.; and Potts, C. 2018. Retrofitting
Distributional Embeddings to Knowledge Graphs with
Functional Relations. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics, 2423–
2436. Santa Fe, New Mexico, USA: Association for Com-
putational Linguistics.
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, 2181–2187.
AAAI Press.
Lin, X. V.; Socher, R.; and Xiong, C. 2018. Multi-hop
knowledge graph reasoning with reward shaping. In Pro-
ceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, 3243–3253.
Mitchell, T.; Cohen, W.; Hruschka, E.; Talukdar, P.; Yang,
B.; Betteridge, J.; Carlson, A.; Dalvi, B.; Gardner, M.;
Kisiel, B.; et al. 2018. Never-Ending Learning. Commu-
nications of the ACM 61(5):103–115.
Neelakantan, A.; Roth, B.; and McCallum, A. 2015. Com-
positional vector space models for knowledge base comple-
tion. In ACL.
Platanios, E. A.; Sachan, M.; Neubig, G.; and Mitchell, T.
2018. Contextual Parameter Generation for Universal Neu-
ral Machine Translation. In Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).
Rocktäschel, T., and Riedel, S. 2017. End-to-end differen-
tiable proving. In Advances in Neural Information Process-
ing Systems, 3788–3800.
Toutanova, K., and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proceed-
ings of the 3rd Workshop on Continuous Vector Space Mod-
els and their Compositionality, 57–66.
Toutanova, K.; Lin, V.; Yih, W.-t.; Poon, H.; and Quirk, C.
2016. Compositional learning of embeddings for relation
paths in knowledge base and text. In ACL.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In International Conference on Machine Learn-
ing (ICML), volume 48, 2071–2080.
West, R.; Gabrilovich, E.; Murphy, K.; Sun, S.; Gupta, R.;
and Lin, D. 2014. Knowledge Base Completion via Search-
Based Question Answering. In WWW.
Xiong, W.; Hoang, T.; and Wang, W. Y. 2017. Deeppath:
A reinforcement learning method for knowledge graph rea-
soning. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 564–573. Asso-
ciation for Computational Linguistics.
Yang, B.; Yih, W.-t.; He, X.; Gao, J.; and Deng, L. 2015.
Embedding entities and relations for learning and inference
in knowledge bases. In International Conference on Learn-
ing Representations (ICLR).
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
learning of logical rules for knowledge base reasoning. In
Advances in Neural Information Processing Systems, 2319–
2328.

