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Abstract

Deep-fake speech refers to the use of artificial intelligence and machine
learning techniques to manipulate and generate synthetic speech that im-
itates a person’s voice or speech patterns. Just like deep-fake videos, which
manipulate visual content to create realistic but fake videos, deep-fake speech
involves altering or creating speech content to make it appear as if someone is
saying something they didn’t say. The process of creating deep-fake speech
typically involves training a neural network on a large dataset of speech
samples from the target speaker. This enables the AI model to learn the
unique nuances, intonations, and speech patterns of the individual. Once
the model is trained, it can generate new speech that sounds like it is coming
from that specific person.

While the technology can have positive applications in speech synthesis
for individuals with speech impairments or for voice-over work in entertain-
ment, it also raises concerns about the potential for misuse and deception.
Deep-fake speech can be used maliciously to create fake speech recordings
of individuals, leading to issues such as misinformation, identity fraud, or
the spread of false rumors. As technology advances, it becomes increasingly
important to develop methods to detect and counteract the harmful effects
of deep-fake speech.

Deep-fake speech detection is a critical research area aiming to develop
effective techniques for accurately identifying fake speech generated using
advanced deep-learning methods. The increase in deep-fake speech poses
significant risks, including the potential for misinformation, fraud, and social
engineering attacks. Detecting and mitigating the spread of deep-fake speech
is essential for maintaining the integrity of speech-based communication and
ensuring the trustworthiness of speech-based applications in various domains.

While humans can relatively easily distinguish between genuine and fake
speech due to the remarkable capabilities of the human auditory system,
machines face significant challenges in achieving the same level of discrim-
ination. One major obstacle lies in effectively separating speech content
from human vocal system information. Common features used in traditional
speech processing, such as Mel-frequency cepstral coefficients (MFCC) and
Gammatone cepstral coefficients (GTCC) struggle to handle this issue, lead-
ing to difficulties for neural networks in learning the discriminative differences
between genuine and fake speech.

To address this fundamental challenge, our research delves into the
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concept of spectro-temporal modulation (STM) representations in genuine
and fake speech. These STM representations simulate the complex auditory
perception process in the human auditory system, capturing both spectral
and temporal modulations in speech signals. By incorporating STM repre-
sentations, we enable our deep-fake speech detection system to exploit the
dynamic characteristics of speech signals and effectively distinguish between
genuine and fake speech.

Our proposed approach involves fitting the STM representations into
a light convolutional neural network bidirectional long short-term memory
(LCNN-BiLSTM) model for classification. The LCNN-BiLSTM model ef-
fectively captures temporal dependencies and long-range patterns in the
STM representations, thereby enhancing the effectiveness of deep-fake speech
detection capabilities.

To evaluate the performance of our approach, we conducted extensive
experiments on benchmark datasets, including the Automatic Speaker Veri-
fication and Spoofing Countermeasures Challenge 2019 (ASVspoof2019) and
the Audio Deep synthesis Detection Challenge 2023 (ADD2023). The results
demonstrated the effectiveness of spectro-temporal modulation representa-
tions in distinguishing genuine and deep-fake speech. Achieving an equal-
error rate of 8.33% on ASVspoof2019 and 42.10% on ADD2023, our method
showed the potential of STM representations in deep-fake speech detection.

In conclusion, our research contributes to the ongoing efforts to combat
the proliferation of deep-fake speech. By leveraging the insights from
human auditory perception and developing novel techniques using STM
representations, we offer a promising solution to address the challenges posed
by artificial speech generation. The proposed deep-fake speech detection
system holds considerable practical importance, safeguarding individuals
from deception and ensuring the authenticity and credibility of speech-based
interactions in today’s digitalized world.

While the focus of this study evaluates the performance against baseline
models, conducting comparisons with other existing deep-fake speech detec-
tion systems could provide a more comprehensive assessment of the proposed
method’s effectiveness. Future work will involve further investigation of the
specific physics-based acoustic features that can be accurately captured and
represented by the STM representation. Moreover, it is essential to expand
the evaluation to encompass other state-of-the-art methods and to assess the
system’s performance across a diverse range of datasets.
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Chapter 1

Introduction

1.1 Research background

With the rapid advancement of deep learning technology, our society has
witnessed the emergence of various applications that have greatly enhanced
our daily lives. For example, audio-books have become more accessible and
engaging through the use of deep learning algorithms, allowing people to
enjoy literature in a new and immersive way [1]. Intelligent speech robots
have also gained popularity, providing assistance and companionship to
individuals in various settings [2]. Moreover, the transformative power of
deep learning technology has proven invaluable in aiding individuals afflicted
by throat diseases and other medical conditions, enabling them to regain their
voices. Through voice synthesis techniques, these individuals can regain their
ability to communicate, improving their quality of life. In addition, it can
also promote the development of new industries in entertainment, such as
voice simulation of virtual characters in film, television, games and other
productions, and customized personalized voices for self-media and other
content creators to be used in communication platforms.

However, the increasing advancement of deep learning technology has
brought about a new challenge: the widespread production of deceptive
synthetic speech, known as deep-fake speech. When harnessed by malicious
actors, this technology can inflict severe repercussions on multiple facets of
society, spanning livelihoods, politics, economies, and social stability. Deep-
fake speech involves the creation of artificial voices that closely resemble the
speech patterns of specific individuals, often achieved through the misuse of
deep learning techniques. The consequences of deep-fake speech are far-
reaching and pose significant threats to societal stability and individual
security. It has the potential to deceive both human listeners and automated
speaker verification (ASV) systems, leading to activities such as identity
theft, fraud, and the dissemination of false information.

Malicious attacks on deep-fake speech can target two main groups:
human auditory systems and machine auditory systems. Attacks on human
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hearing, particularly the increasing use of deep-fake speech manipulation,
have captured worldwide attention. This technology allows the synthesis
of a target speaker’s voice, enabling the manipulation of individuals to
make false statements and incite violence or engage in fraudulent activities.
These actions can undermine state security, national property, and social
stability. One significant concern is the possibility of deep-fake speech
altering the statements of public figures, such as politicians. The spread
of fabricated remarks attributed to political leaders can harm public trust,
social unity, and the democratic system [3]. In an era where information
greatly influences people’s opinions and choices, the demand for reliable
methods to detect deep-fake speech is increasingly critical. Additionally,
voice forgery poses challenges to judicial forensics. On the other hand,
attacks on machine hearing systems specifically ASV are also a concern. In
the era of artificial intelligence, voice-based identity authentication plays a
crucial role in securing access to intelligent devices and network transactions.
Maliciously manipulating speaker verification systems through forged voices
allows unauthorized access to a user’s voiceprint, compromising their security
and enabling control over their devices and accounts. This poses a significant
threat to voice-based security access control. Therefore, it is imperative to
propose an effective method for detecting deep-fake speech.

1.2 Research issues

In recent years, in order to effectively defend against the above-mentioned
harms caused by maliciously abused fake speech to human beings and
machines, several challenges have been organized by scholars to advance the
field of deep-fake speech detection. These challenges serve as platforms to
encourage the development of robust strategies to combat deep-fake speech.
One notable global challenge is the Automatic Speaker Verification and
Spoofing Countermeasures Challenge (ASVspoof) [4]. The challenge aims
to promote research and innovation in detecting and mitigating spoofing
attempts in speaker verification systems. Another significant challenge is
the Audio Deep Synthesis Detection (ADD) challenge [5], which focuses on
detecting deep-fake speech in realistic scenarios. By providing a benchmark
dataset and evaluation metrics, this challenge encourages the development
of effective methods for deep-fake speech detection in real-life settings.

Despite the availability of various challenges and proposed methods for
deep-fake speech detection, accurately distinguishing between genuine speech
and fake speech remains a challenging task for machines. The main difficulty
arises from the inherent differences in the characteristics of genuine speech
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and machine-generated fake speech. Genuine speech exhibits not only linguis-
tic content but also reflects human vocal system activity, including unique
characteristics such as glottal vibration. In contrast, machine-generated
fake speech lacks these human-like characteristics, making it challenging
for machines to accurately differentiate between them. Commonly used
features struggle to effectively capture the distinct patterns associated with
genuine speech and human vocal system activity, resulting in insufficient
discriminative information for training neural networks.

To achieve effective detection of deep-fake speech, it is crucial to success-
fully separate the components of speech signals. By effectively separating
the linguistic content from the characteristics related to human vocal system
activity, it becomes possible to capture the unique patterns and features
associated with genuine speech. This separation can be achieved through
advanced techniques, such as the utilization of spectro-temporal modulation
(STM) representations, which simulate the auditory perception process in
the human auditory system. By integrating STM representations into deep-
fake speech detection systems, an effective method for distinguishing between
genuine and fake speech can be achieved.

1.3 Research motivation

To address the issues in deep-fake speech detection, we drew inspiration from
the remarkable capabilities of the human auditory mechanism. Extensive
research has shown that the human auditory cortex possesses dynamic and
adaptive properties that enable us to effectively differentiate between speech
produced by humans and machine-generated speech [6]. Building upon this
understanding, a study [7] discovered that auditory cortex neurons possess
the capability to transform spectrograms, resulting in STM content. As
a consequence, this breakthrough paved the way for the STM’s develop-
ment—an innovative multi-scale representation utilized for speech analysis,
which has demonstrated its efficacy in explaining various psychoacoustic
phenomena [8]. Another study [9] proposed an STM-based method for audio
classification inspired by human auditory mechanisms. By utilizing an audi-
tory model to capture relevant features, these methods have demonstrated
their effectiveness in classification. Therefore, it is reasonable to consider
that STM representation has the potential to discriminate deep-fake speech
and enhance detection accuracy.
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1.4 Research purpose

The primary research objective of this study is to develop effective techniques
for deep-fake speech detection. By achieving this objective, the ultimate goal
is to mitigate the negative impact of maliciously produced or disseminated
fake speech in various real-life scenarios.

To achieve the research objective, the study investigates and analyzes the
role of feature expressions and spectro-temporal modulation representations
in both genuine and fake speech, simulating the human auditory perception
process. These representations offer valuable insights into the dynamic char-
acteristics of speech signals, providing crucial information for differentiating
between genuine and deep-fake speech. Leveraging this knowledge, the
research aims to design a deep-fake speech detection model that effectively
exploits spectro-temporal modulation representations to make accurate and
reliable classifications.

Furthermore, the study aims to contribute theoretically by offering valu-
able insights into the underlying mechanisms of human auditory perception
and the unique features that distinguish genuine speech from deep-fake
speech. By exploring the capabilities of cochlear and auditory cortex
perception in recognizing deep-fake speech, the study sheds light on the
challenges and opportunities in developing reliable detection systems.

1.5 Organization of thesis

The thesis is organized as illustrated in Figure 2.2. The organization along
with its details can be described as follows:

Chapter 1 introduces the background of the thesis topic. It provides a
brief overview of deep-fake speech and the potential harm it can cause. The
importance of addressing the challenges associated with deep-fake speech is
emphasized.

Chapter 2 reviews the types of deep-fake speech, the related works in
deep-fake speech detection, the concept of human auditory mechanism, and
spectro-temporal modulation.

Chapter 3 describes the details of spectro-temporal modulation and
investigates the role of feature expressions, as well as the simulation process
of implementing spectro-temporal modulation.

Chapter 4 presents a method for detecting deep-fake speech, which en-
compasses the framework, feature extraction, and details of the identification
model.
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Chapter 5 shows the datasets and evaluation metrics used in this thesis,
along with comparison experiments that utilize these common measurements
to assess the results. Subsequently, the obtained results serve as the
foundation for a comprehensive general discussion.

Chapter 6 summarizes the whole work in the master’s program, consisting
of the research contribution and the remaining works.
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Figure 1.1: Organization of the thesis
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Chapter 2

Literature Review

2.1 Deep-fake speech

2.1.1 Types of deep-fake speech

Deep-fake speech can be categorized into three distinct types, as shown in
Figure 2.1.

1. Replay-based:
Replay-based deep-fake speech refers to malicious techniques used to
replicate or reproduce recorded voices of individuals. These deceptive
works aim to create realistic imitations of the interlocutor’s voice, often
for fraudulent purposes [10]. Two distinct categories of fake speech
can be identified: far-field detection and cut-and-paste detection. Far-
field detection involves the attacker utilizing a hands-free phone to
play a recorded voice of the victim as a test segment [11]. On
the other hand, cut-and-paste attacks entail generating a requested
sentence using a text-dependent system [12]. In response to replay-
based attacks, text-dependent speaker verification methods have been
suggested [10] [13]. These methods leverage the distinct traits of the
speaker’s voice to authenticate the speech. Additionally, an emerging
strategy for detecting end-to-end replay attacks involves the use of
convolutional neural networks, capable of learning intricate patterns
and features to discern manipulated or synthesized voices [14].

2. Synthetic-based:
This thesis centers on synthetic-based fake speech. The structure of
this subsection is illustrated in Figure 2.2.
Speech synthesis generates the target speaker’s voice from the specified
linguistic text, realizing text-to-speech (TTS), which converts written
text into real-time, natural-sounding speech [15]. A common configu-
ration for speech synthesis involves two main components: the analysis
of front-end text and the generation of speech waveforms on the back-
end, as shown in Figure 2.3. Text analysis generates the corresponding
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Figure 2.1: Types and hazards of deep-fake speech
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Figure 2.2: Structure of the synthetic-based fake speech subsection

Figure 2.3: Basic architecture of synthetic-based approach
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phoneme sequences, duration prediction, and other information from
the input text through normalization, word segmentation, lexical an-
notation, and other steps. Speech waveform generation synthesizes the
target speaker’s voice waveform according to linguistic specifications
generated by text analysis. The progress of deep learning has led
to a gradual shift in speech synthesis, transitioning from traditional
methods to deep learning-based speech synthesis. Currently, with the
advancement of deep learning, the incorporation of the end-to-end
speech synthesis mechanism into the technology has been a gradual pro-
cess, i.e., connecting the text analysis and waveform generation process,
directly inputting text or annotated characters, and outputting speech
waveforms. This subsection will introduce representative traditional
speech synthesis work and the latest deep learning speech synthesis
work respectively.
Traditional approach:
Traditional speech synthesis mainly includes the waveform splicing
method and the parameter generation method. Waveform splicing
speech synthesis splices speech units from natural speech data accord-
ing to certain rules to synthesize speech that is highly similar and
natural to the target speaker, including corpus collection, acoustic
unit selection, splicing and forgery, and other steps. Simple methods
of waveform splicing speech synthesis use editing software to directly
modify the audio signal by cutting, inserting, copying, and pasting
operations, i.e., copy-paste tampering. More complex splicing methods
will adjust and control the rhythm of each splicing unit in order to
obtain more natural and smooth synthesized speech, representative
works include the PSOLA technique for base-step superposition [16]
and unit selection system using the Hidden Markov Model (HMM) to
limit rhythmic parameters of target unit [17]. In recent years, waveform
spliced speech synthesis mostly adopts deep learning techniques, such as
Google proposed a system in 2017 that utilizes a sequence-to-sequence
LSTM self-encoder for real-time unit selection. [18]. Waveform spliced
speech synthesis is suitable for some specific domains such as weather
forecasting, time reporting, financial services, etc. The method uses
real speech segments, which maximizes the preservation of speech
sound quality and allows for the synthesis of highly naturalistic speech.
However, it requires a large amount of target speaker corpus and is
not stable for text synthesis in different domains, which can be easily
recognized by humans or machines. Parameter generation-based speech
synthesis predicts acoustic parameters through acoustic modeling and
synthesizes the target speaker’s speech from the acoustic parameters
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through a vocoder. The traditional representative works of parametric
generation speech synthesis techniques include HMM-based statistical
parameter synthesis methods [17] and DNN-based parameter synthesis
methods [19]. Parametric speech synthesis can output stable and
smooth speech, but the synthesized speech is usually not natural
enough due to the defects of parametric synthesizers and the loss of
statistical modeling, such as insufficient smoothing of the generation
parameters and insufficient accuracy of HMM modeling.
Deep learning approach:
Deep learning technology has greatly influenced speech synthesis in
recent years, leading to its predominant adoption of deep learning
methods. These methods primarily fall into two categories: pipeline
speech synthesis and end-to-end speech synthesis.
Pipeline speech synthesis as a whole can be categorized into three
distinct components that encompass text analysis, acoustic modeling,
and vocoder. In the text analysis component, each phoneme undergoes
rhyme prediction and duration prediction based on the input text,
the acoustic model establishes the connection between text features
and acoustic features, and maps to acoustic features based on the
output of the text analysis via DNN: the vocoder module realizes
the conversion of acoustic parameters to speech waveforms. In 2017,
Baidu Artificial Intelligence Laboratory used a neural network model to
replace the submodule of the traditional parametric speech synthesis,
combined with the improved WaveNet acoustic coder, which is the
most efficient way to synthesize speech [20]. In 2018, Baidu AI Lab
further proposed Deep Voice3, a fully convolutional speech synthesis
system that employs an attention-based approach, which uses an
encoder to convert text into high-level feature representations, and
an autoregressive decoder to generate Mel-scale spectrograms, while
introducing a non-autoregressive-post-processing-converter [21]. The
network functions as a converter, utilizing the decoder’s hidden state
to predict vocoder parameters, thereby enhancing the speed of speech
synthesis. Pipelined speech synthesis harnesses the potent learning
capabilities of deep learning to address the limitations of traditional
statistical construction mode speech synthesis to some extent, but the
accumulation of errors between multiple modules and the need for
costly text annotation as well as the mandatory alignment of textual
and acoustic features, the above problems limit its speech synthesis
effectiveness.
The end-to-end speech synthesis system realizes direct text input
or phonetic characters and output of audio waveforms, which greatly
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reduces the complexity of the speech synthesis system construction, and
reduces manual intervention in the synthesis process and the need for
linguistics-related background knowledge. The reduction of modules in
the end-to-end system also effectively avoids the accumulation of errors
caused by the multi-stage modeling of traditional methods and achieves
a significant improvement in the performance of speech synthesis. The
present deep learning-based end-to-end speech synthesis systems can
be classified into two categories: autoregressive and non-autoregressive
models.
Autoregressive speech synthesis is based on a sequence-to-sequence
generation system, which can achieve the current optimal speech
synthesis effect, but the synthesis speed is slow. In 2016, Google
proposed the WaveNet speech synthesis algorithm, which generates the
next sampling point based on the current moment sampling point by
expanding a causal convolutional network [22]. The model directly
models the raw speech data, avoiding the loss of sound quality that
results when a vocoder parameterizes the speech. However, this system
cannot realize the direct conversion of input text or labeled notes to
output speech. In 2017, Wang et al. proposed Tacotron, the first
end-to-end speech synthesis system [23]. The model introduces an
attention mechanism, inputs text or annotated characters, outputs a
linear spectrogram, and generates speech waveforms by the Griffin-
Lim algorithm. All feature models in Tacotron can be self-learning
and tuned, and it is easy to add language, timbre, emotion, and other
constraints, but the model is complex, with poor error correction and
human intervention, and the sound quality is not as good as that of
the speech synthesized by the WaveNet-based synthesizer. In 2018,
Tacotron2, an improved system of Tacotron, simplified the structure
of the front-end model and generated the Mel spectrogram based on
the text input, and then synthesized speech waveforms by an improved
WaveNet vocoder to synthesize speech waveforms and build a complete
speech synthesis system [24]. The system produces synthesized speech
that is close to the human voice. In 2021, Weiss et al. extend the
Tacotron system by adding normalized streams to the autoregressive
decoder and propose the end-to-end speech synthesis system Wave-
Tacotron, which does not generate intermediate features and therefore
does not require a vocoder, allowing for end-to-end speech synthesis of
text to waveforms [25].
Non-autoregressive speech synthesis relies on a fully parallel network
structure, enabling the generation of complete speech through a single
feed-forward computation. This significant advancement enhances the
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speed of speech synthesis, offers better controllability, and achieves
speech synthesis quality comparable to that of the autoregressive
model. In 2019, Wang et al. proposed a real-time parametric speech
synthesis model based on source filtering [26]. Based on the training
criterion of spectral distance and phase distance, the model generates
sinusoidal excitation signals for a given input acoustic feature by means
of a source module, fundamental F0, and harmonic additive noise
model, and then converts the excitation signals and spectral features
into speech waveforms by means of cascaded dilation convolution and
Long-Short Term Memory (LSTM) network. In 2019, Ren et al. pro-
posed FastSpeech, a Transformer-based speech synthesis system that
extracts attentional alignment from an encoder-decoder-based teacher
model to predict phoneme durations, extends the source phoneme
sequences to match the length of the target phoneme sequences through
length adjustment and generates Mel spectrograms in parallel. This
system is comparable to the autoregressive model in terms of speech
quality, while greatly improving the speed of speech generation [27].In
2021, Elias et al. expanded the Tacotron system by incorporating a
residual encoder derived from the Variational Auto-Encoder (VAE) and
introduced an end-to-end speech synthesis system known as Parallel
Tacotron [28]. The system incorporates VAE and selective spectral loss
to enhance the naturalness of speech synthesis, while utilizing LCNN to
implement the self-attention mechanism, thereby improving generation
efficiency. Remarkably, this model achieves substantial improvements
in speech generation speed while maintaining speech quality on par
with Tacotron2.

3. Imitation-based
Imitation is a technique used to transform the original speech of one
speaker (referred to as the ”original”) to resemble that of another
speaker (referred to as the ”target”) [29]. Through the use of an
algorithm based on imitation, the spoken signal undergoes processing
and modification to closely replicate the style, intonation, or prosody of
the target voice while retaining the linguistic information of the original
speech, resulting in a convincing imitation [30]. This process involves
adjusting the acoustic characteristics of the speech signal to align with
the target speaker, effectively converting the voice from one individual
to another.
The method is occasionally confused with the synthetic-based ap-
proach, as the generation process lacks a clear distinction between the
two. Both techniques involve modifying the acoustic-spectral and style
attributes of speech signals. However, in the context of imitation-
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based speech, the original input and resulting output text usually
remain unchanged. The primary focus lies in adjusting the sentence’s
delivery to match the unique characteristics of the target speaker. This
approach aims to achieve a voice transformation while retaining the
original linguistic content of the sentence [31].

2.1.2 Speech forgery challenges

Mainstream speech forgery competitions include Blizzard Challenge, Voice
Conversion Challenge (VCC), etc. Some international conferences on acous-
tics also organize voice forgery challenges, such as the Multi-Speaker Multi-
style Voice Cloning Contest (M2VoC) organized by International Conference
on Acoustics, Speech, and Signal Processing (ICASSP).
The Blizzard Challenge, an annual international speech synthesis compe-

tition co-sponsored by Carnegie Mellon University and Nagoya Institute of
Technology, Japan, it was first organized in 2005 and has been held for
16 years. The competition aims to build an open and unified evaluation
platform for speech synthesis technology and promote the rapid development
of speech synthesis technology. Participants are required to assemble a set of
prescribed test phrases based on official data, and The organizer will assess
the synthesized speech’s fidelity through auditory examination during the
test.
The Voice Conversion Challenge (VCC) is a biennial international voice

conversion competition jointly sponsored by several universities, including
Nagoya University and the University of Science and Technology of China.
It was first organized in 2016 and has been held three times (2016, 2018, and
2020). The competition promotes the development of Voice Conversion (VC)
technology by releasing open datasets and organizing competitive evaluations
for outstanding problems and challenges facing VC technology. Participants
are required to realize speech conversion (e.g., semi-parallel conversion, cross-
language conversion, etc.) for specific tasks based on the officially released
specified datasets, and the quality of the converted speech will be evaluated
by the organizer, considering both its naturalness and speaker similarity.
The Multi-speaker Multi-style Tone Drop Competition (M2VOC) is one of

the signal processing challenges of ICASSP 2021. It addresses the current
limitations of multispeaker and multi-style speech forgery and provides a
common dataset and testbed to facilitate the development of speech cloning.
M2VoC 2021 has two tracks, the few samples track and the very few samples
track. Participants are required to generate sentences and short paragraphs
based on speech samples, and the organizer evaluates the clones for speaker
similarity, voice quality, style/expression, and pronunciation accuracy.
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2.2 Deep-fake speech detection

2.2.1 Current common challenges

ASVspoof challenge: The realm of fake speech detection hosts its most
prominent and comprehensive challenge known as the biennial Automatic
Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof
challenge). This event is organized and initiated by esteemed institutions
like the University of Edinburgh (UK), EURECOM (France), NEC (Japan),
and the University of Eastern Finland (Finland). Its core purpose revolves
around fostering the advancement of ASV fake speech detection techniques
through the dissemination of open datasets and the facilitation of competitive
evaluations. The ASVspoof challenge was first held in 2015 and has been held
four times (2015, 2017, 2019, 2021). The ASVspoof 2015 challenge addresses
both synthetic and conversion forgery attacks, while the ASVspoof 2017
challenge targets replay attacks. In contrast, the ASVspoof 2019 challenge
addresses multiple synthesis/conversion forgery attacks and replay attacks
across LA and PA subtasks. Lastly, the ASVspoof 2021 challenge comprises
three subtasks: LA scenario, PA scenario, and deep-fake speech detection
without ASVs. Compared with the previous three competitions, ASVspoof
2021 has three improvements: first, the challenge of LA scenario is extended
to explore detection algorithms robust to channel variations; second, the sub-
task of PA scenario is more realistic by using audio recorded in real physical
environments; and lastly, it is the first time that this competition explores
deep-fake detection of speech with the purpose of spoofing human beings.
ADD challenge: However, there has been a recognition that many real-

life scenarios have not been adequately covered in the ASVspoof challenge.
To address this gap, the Audio Deep synthesis Detection Challenge (ADD)
was motivated. In 2022, the inaugural ADD challenge featured three
subtasks: detecting low-quality fake audio, detecting partially fake audio, and
audio fake game. These subtasks collectively aim to comprehensively evaluate
the capabilities of ASV systems in identifying various types of voice spoofing
attacks, covering both low-quality and partially manipulated audio samples.
The inclusion of these tracks in the ADD challenge aims to advance research
in the field and encourage the creation of more robust and efficient solutions
to counter speech-spoofing attacks. Additionally, there is growing interest
in going beyond the limitations of binary classification (genuine/fake) and
instead focusing on identifying and localizing specific manipulated intervals
within the partially fake speech. Moreover, there is a need to pinpoint
the source responsible for generating the fake audio. In order to encourage
researchers worldwide to develop new and innovative technologies to address
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these challenges, ADD 2023 was proposed. This challenge aims to accelerate
and promote research in the detection and analysis of deep-fake utterances.

2.2.2 Methods for detecting deep-fake speech

The basic idea of deep-fake speech detection is to find the feature differences
between genuine speech and fake speech. The typical fake speech detection
system is generally composed of two parts: front-end and back-end. The
front-end extracts distinguishing features by analyzing the speech signal, and
the back-end judges whether the speech is genuine or fake by classification.
Traditional detection systems use manual features designed by experts for
discriminative features in the front-end, while the back-end directly uses
Gaussian Mixture Model (GMN) or Support Vector Machine (SVM) for
classification decisions. In recent years, deep learning-based systems have
gradually become mainstream systems. The front-end extracts speech
features from input neural networks, while the back-end learns advanced
representations of features through neural networks and then performs clas-
sification judgments. At present, some end-to-end systems have emerged
that can directly use the original audio waveform as network input, learn
advanced feature representations, and make decisions. The architecture of a
generic fake speech detection system is shown in Figure 2.4

Figure 2.4: The architecture of a generic fake speech detection system.

1. Feature extraction: The front-end of fake speech detection system
primarily concentrates on extracting distinctive features from fake
speech that can be used for identification by the back-end. This involves
constructing features based on the absence of spectral and temporal
details in fake speech, enabling effective differentiation from genuine
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speech. Traditional detection methods mostly use carefully designed
manual features. With the popularization of data-driven deep learning
methods, front-end features gradually develop towards relatively low-
level features such as spectra. Figure 2.5 summarizes the commonly
used features in current fake speech detection, which can be mainly
divided into three categories: spectral features, identity features, and
original waveforms, with spectral features being the most widely used.
Numerous features have been developed, drawing inspiration from the
human auditory mechanism. These features can be categorized as
follows:

Figure 2.5: Commonly used features for fake speech detection

The short-term power spectrum feature describes the variation
of signal power with frequency. Commonly used include Mel Frequency
Cepstral Coefficients (MFCC), Rectangular Filter Cepstral Coefficients
(RFCC), Linear Frequency Cepstral Coefficients (LFCC), Inverted Mel
Frequency Cepstral Coefficients (IMFCC), and Linear Prediction Cep-
stral Coefficients (LPCC). Due to the inability to effectively simulate
the temporal characteristics of forged speech, the high-order coefficients
of cepstrum and the first-order and second-order dynamic differential
coefficients are both beneficial for detecting fake speech [32].
The amplitude spectrum features currently used for fake speech
detection include Log Magnitude Spectrum (LMS) and Residual Log
Magnitude Spectrum (RLMS). LMS contains details of speech signals,
such as Formants, pitch and harmonics in spoken vowels. The RLMS
is extracted from the residual waveform of Linear predictive coding
(LPC), which contains spectrum details such as harmonics. Compared
with LMS, RLMS eliminates the Formant effect [33].

17



Due to the neglect of phase information during waveform reconstruction
by the vocoder, short-time phase feature are one of the effective
features for detecting fake speech. The phase spectrum obtained from
the Fourier transform has phase distortion, so it needs to be processed
to obtain stable and effective phase features. Common phase features
include group delay (GD), modified group delay (MGD), the baseband
phase difference (BPD), etc [33].
The long-time transformation features extracted from speech
signals are effective for detecting fake speech. For example, the
Cochlear Filter Instantaneous phase and frequency Coefficients with
Instantaneous Frequency (CFCCIFs) [34] and the Constant Q Cepstral
Coefficients (CQCC) [35] based on the long-term constant Q transform,
which performed best in the ASVspoof 2015 challenge, they are all
based on the long-time transform.

2. Identification: In a fake speech detection system, the back-end is
responsible for processing and classifying the features extracted from
the front-end to determine speech authenticity. Traditionally, feature-
based machine learning methods, like Gaussian Mixture Model (GMM)
and Support Vector Machine (SVM) based classifiers, have been com-
monly utilized in the back-end to directly classify and screen the manual
input features. GMM employs multiple Gaussian distribution functions
in a linear combination to fit any distribution. However, with the rise of
deep learning, the latest fake speech detection systems primarily rely on
the feature representation capabilities of deep neural networks (DNNs)
and classification network-assisted neural networks in the back-end.
These systems harness the feature learning ability of neural networks
to obtain more sophisticated feature representations from the input
features of the front-end before conducting the classification.
Currently, most research in this field is focused on specific attack types
or is based on fixed datasets, making it challenging for a single system
to efficiently detect multiple types of forgery attacks (such as Text-
to-Speech (TTS), Voice Spoofing (VS), TTS-VC hybrid, etc.) and
unknown attacks that were not encountered during training. Since
it is difficult to anticipate the specific type of attack in practice, the
latest research efforts are directed toward improving the generalization
of detection. The goal is to design a universal detection system capable
of handling different types of forgery attacks and resisting noise inter-
ference in various channel environments. Among the different architec-
tures used for the back-end, the CNN architecture is widely adopted in
the implementation of these systems. Variants like light Convolutional
neural network (LCNN), deep residual network (ResNet), squeeze-and-
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excitation networks (SENet), etc., are commonly used. In some cases,
recurrent neural network (RNN) architectures like Gated Recurrent
Units (GRU) are introduced to capture sequence context information.
The primary focus in enhancing the discriminative performance of
classifiers is to learn more advanced and robust feature representations.
The aim is to ensure that feature distances between similar samples are
kept as close as possible while maintaining a considerable separation
between feature distances of dissimilar samples.
ResNet was originally introduced to address the problem of degradation
in deep networks and the vanishing gradient problem. In fake speech
detection networks based on CNN, when the network becomes deep, it
encounters the vanishing gradient problem. This problem hinders the
lower layers from receiving useful update information during training,
which makes it difficult for the network to learn more advanced and
differentiated feature representations. ResNet effectively solves this
issue by using skip connections as shortcuts, reducing the training
parameters of deep networks and allowing faster propagation of param-
eter updates to lower layers during training. As a result, ResNet has
become one of the most widely used networks in fake speech detection.
Several studies have utilized ResNet for fake speech detection. In 2019,
Alzantot et al. proposed a deep ResNet-based detection scheme that
fused three different front-end features (MFCC, spectrogram, CQCC)
[36]. In 2020, Li et al. introduced a detection scheme based on
Res2Net, which divided features within the same block into multiple
channel groups, allowing different groups to undergo different scale
transformations and incorporating residual-like connections between
groups. This structure enabled the learning of multi-scale feature rep-
resentations, improving the system’s generalization against unknown
attacks [37]. Additionally, in 2020, Parasu et al. proposed a Light
ResNet structure, which demonstrated good universality, effectively
crossing databases and attack types [38]. This simplified version of
ResNet reduced parameters to prevent overfitting while maintaining
a lightweight network. Experimental results showed that this model
outperformed the CQCC-GMM baseline system of the ASVspoof2019
Challenge in cross-dataset detection.
LCNN, proposed by Wu et al. in 2018, it was initially applied in facial
recognition and has proven to be effective in fake speech detection
[39]. The best system of the ASVspoof2017 Challenge and the best
single system of the ASVspoof2019 Challenge LA scene were based on
LCNN. LCNN can efficiently process large-scale data with numerous
noise labels while reducing computing costs and storage space. Its
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core innovation lies in the introduction of the Max Feature Map
(MFM) Activation function after each convolution layer. The MFM
activation produces more compact feature maps compared to the ReLU
Activation function, enabling feature selection and dimension reduction
simultaneously. Experiments have shown that MFM activation dis-
cards noise effects, such as environmental noise and signal distortion
while preserving core information and enhancing the learning ability
of lower-level network features. In 2019, Gomez Alanis proposed a
lightweight convolutional gated recurrent neural network (LC-GRNN)
based on GRU, which combined LCNN and RNN [40]. LC-GRNN
combined the strengths of LCNN and RNN to extract discriminative
features at various levels and learn contextual features. In 2020,
Wu et al. introduced a CNN-based Genuinization model for fitting
genuine speech distribution [41]. This model received manual feature
inputs extracted from the front-end and generated advanced feature
representations more conducive to distinguishing speech authenticity.
The model focused on fitting the distribution of real speech, which
was considered easier than the diverse distribution of fake speech. The
feature normalization model amplified the differences between true and
false speech. Its structure resembled that of an Autoencoder. In 2021,
Kuak et al. proposed the detection system ResMax, which combined
the MFM Activation function and ResNet’s residual structure within
LCNN. ResMax was a single model with fewer parameters but exhibited
good detection performance [42].
The Squeezing Excitation Network (SENet) was introduced by Hu et
al. in 2018, focusing on demonstrating the interdependence between
modeling channels through squeezing excitation operations [43]. The
Squeeze Excitation (SE) module in the network first compresses the
feature map to obtain channel-level global features and then stimulates
these global features to learn the relationships between each channel.
By assigning different influence weights to different channels, the
model’s ability to focus on the most relevant channel information for
forgery detection is improved. In 2019, Lai et al. proposed a detection
system called ASSERT, which integrated SENet and ResNet along with
three other systems: mean standard deviation ResNet and expanded
ResNet [44]. The combination of SENet and network architectures like
ResNet led to enhanced detection results. In 2020, Li et al. introduced
a detection scheme based on Res2Net, which integrated a squeezing
excitation module into the Res2Net network, further improving the
detection performance [37]. In 2021, Hemavathi et al. used blind
source separation (BSS) technology based on non-negative Matrix de-
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composition to decompose synthetic speech into real speech and artifact
components [45]. They then employed a CNN-based classifier to classify
the target speech. Although this paper did not compare with the most
advanced detection methods, it presented a new idea in the detection
field. Similarly, in 2021, Chen et al. proposed a spoof print system
for counterfeit speech detection, which deviated from the traditional
detection system framework [46]. This system resembling the ASV
system consisted of two stages: registration and verification. In the
registration stage, the speaker watermark model was learned based on
real speech samples of the target speaker. In the verification stage,
the authenticity of the test sample was determined by calculating the
cosine similarity between the test sample and the speaker watermark.
In the same year, Luo et al. introduced a detection network based
on a capsule network (CapsNet) and modified the Dynamic routing
algorithm of the original network [47]. This modification forced the
network to learn to forge artifacts in the voice, thereby enhancing the
system’s generalization ability.

2.2.3 Evaluation metrics

Equal Error Rate (EER) and tandem detection cost function (t-DCF) serve
as prevalent performance metrics in the evaluation of fake speech detection
systems.
EER is the error rate when False Accept Rate (FAR) and False Rejection

Rate (FRR) are equal. Fake speech detection involves categorizing speech
as either genuine or fake. An error acceptance occurs when the detection
system misclassifies fake speech as genuine speech. On the other hand, an
error rejection happens when the system misclassifies real speech as fake
speech. Given the detection score and threshold of the detection system.
The EER is defined as follows. Let Pfa(θ) and Pmiss(θ) denote the false
alarm and miss rates at threshold θ.

Pfa(θ) =
fake samples with score > θ

total fake samples
(2.1)

Pmiss(θ) =
genuine samples with score < θ

total genuine samples
(2.2)

Therefore, Pfa(θ) and Pmiss(θ) are monitonically decreasing and increasing
functions of θ, respectively. The EER corresponds to the threshold θEER

at which the two detection error rates are equal, i.e. EER = Pfa(θEER) =
Pmiss(θEER). A smaller EER value indicates the superior performance of the
fake speech detection system.
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t-DCF is an evaluation indicator introduced in the ASVspoof 2019 chal-
lenge. In practical scenarios, the fake speech detection system plays an
auxiliary role in decision-making for the ASV system. This indicator is not
employed for the isolated evaluation of the fake speech detection system.
Instead, it reflects the collective influence of fake speech and the system
on the actual performance of the ASV system in real-world scenarios. t-
DCF draws on minimum risk Bayesian decision-making for system reliability
evaluation. In real-world scenarios, ASV systems often face legitimate users,
temporarily impersonated illegal users, and attackers trying to manipulate
ASV decisions for malicious purposes. This indicator takes into account
the potential consequences of misjudgments in various situations. The
calculation processing is as follows.

min t−DCF = min {βPmiss(θ) + Pfa(θ)} (2.3)

Pfa(θ) and Pmiss(θ) are the error acceptance rate and error rejection rate of
the fake speech detection system when the threshold is θ. And the coefficient
β depends on the actual priority of fake attacks, misjudgment costs, and the
detection performance of the ASV system. A smaller t-DCF value indicates
the better generalization performance of the fake speech detection system.

2.2.4 Current limitations

Despite many features are employed in deep-fake speech detection tasks,
it is difficult for machines to distinguish them accurately. On the other
hand, humans can distinguish genuine and fake speech through our sense
of hearing. Taking inspiration from the human auditory mechanism, our
approach involves exploring feature representations that not only capture
the speech content but also the subtle cues associated with human vocal
system activity.

2.3 Human auditory mechanism

The effectiveness of features related to the human auditory mechanism
in detecting deep-fake speech stems from the unique characteristics and
adaptability of our auditory perception. With its heightened sensitivity and
distinctive perception abilities, the human auditory system has evolved to
adeptly process and analyze intricate auditory stimuli, encompassing speech.
This natural adaptation enables the differentiation between genuine and fake
speech by capturing and discerning subtle features within speech signals.
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Here are some possible reasons why the human ear can distinguish between
true and false speech:

1. Human beings grow up in language and speech environments, receiving
speech training that provides us with rich experience and memory for
genuine speech perception and patterns. This extensive training helps
us distinguish between normal, natural speech patterns, and potential
anomalies.

2. Humans develop unique perceptual models for the voices and pronun-
ciation habits of different speakers through experiential contact and
auditory memory. This cognitive model allows us to detect features
that deviate from our familiar sound models, aiding in identifying
potential inconsistencies in speech.

3. The human ear exhibits a keen ability to perceive multiple features
in speech signals, such as pitch, formant, and sound quality, which
reflect the sound source, vocal tract characteristics, and pronunciation
habits during speech production. Analyzing these features enables us
to identify subtle differences in sound and distinguish between true and
false speech.

4. When people understand and interpret speech, they not only rely on
individual sound features but also integrate contextual information,
including grammar, vocabulary, sentence structure, and related nonver-
bal cues such as facial expressions and body language. This contextual
information plays a crucial role in helping us judge the authenticity
and consistency of speech.

The human auditory mechanism is critical in distinguishing between gen-
uine and fake speech. It can analyze speech sounds by detecting changes
in both the spectral and temporal domains, allowing us to understand
speech even in challenging acoustic environments. For instance, a study
conducted at the University of Geneva1 discovered that the auditory cortex
amplifies different aspects of sounds based on the task at hand. Voice-specific
information is prioritized for voice recognition tasks, while other aspects of
the sound are amplified for other tasks. These findings highlight the complex
and dynamic nature of human auditory processing, enabling us to effectively
differentiate between genuine and fake speech. [48]
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Chapter 3

Sound analysis based on spectro-
temporal modulation represen-
tation

3.1 Concept of spectro-temporal modulation

Temporal modulation refers to changes in modulations over time in the spec-
trogram, while spectral modulation represents variations along the frequency
axis. Spectro-temporal modulation (STM) combines both temporal and spec-
tral modulations simultaneously, providing a comprehensive representation of
the dynamic characteristics of a signal. In the field of auditory psychophysics
and neuroscience, the auditory model is divided into two essential stages:
transforming the acoustic signal into an auditory spectrogram and analyzing
this spectrogram to estimate spectral and temporal modulation content using
specialized filters that respond to specific modulations [49,50].
In the initial stage, the acoustic signal undergoes the transformation into an

auditory spectrogram, which serves as an internal neural representation. This
spectrogram encapsulates the distribution of energy across various frequency
bands over time. The second stage analyzes the auditory spectrogram and
extracts information related to spectral and temporal modulations. This
analysis is achieved using specialized filters that are sensitive to specific
modulation rates and frequency ranges [51–53]. By separating different
cues and characteristics associated with distinct auditory percepts, this stage
resembles the adaptive and masking properties of the human auditory system.
It enables vital information to be perceived even in noisy environments.
Incorporating STM analysis provides a more comprehensive understanding

of human perception and can reveal meaningful characteristics in the speech
signal that aid in the detection of deep-fake speech. The STM representation
is obtained through a series of steps. Initially, the input signal is decomposed
into frequency components using filterbanks, which divide the speech signal
into distinct frequency bands. Following this, the power envelope is computed
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through the process of squaring the output of the filterbank. Finally, a two-
dimensional spectral analysis is performed on this power envelope to derive
the STM spectrogram. This spectrogram represents the dynamic variations
present in the speech signal across different spectral and temporal scales.
The process of STM calculation processing is shown in Figure 3.1

Figure 3.1: Block diagram of STM calculation

3.2 Investigation the role of feature expres-

sions

In order to investigate the role of feature expressions, three filterbanks
were employed to implement the STM independently. The Mel filterbank
(Mel FB) and Gammatone filterbank (ERB FB) are both widely utilized
filterbanks in the realm of speech signal processing [54].

3.2.1 Mel filterbank

The Mel filterbank (Mel FB) is constructed based on the Mel scale, which is
a perceptual scale of pitches judged by listeners to have equal distances from
one another [55]. This perceptual aspect, associated with musical melodies,
serves as the correlate of repetition rate.
The Mel FB comprises a set of evenly spaced triangular-shaped filters

positioned along the Mel scale. Each filter is centered at a specific Mel
frequency and has a bandwidth determined by the adjacent filters. The
filters’ central frequencies are aligned with critical bands, representing specific
regions of the auditory system that respond to distinct frequency ranges.
The width of each triangular filter is typically defined by the Mel frequency
difference between the center frequency and the frequencies where the filter
response drops to half power.
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The triangular shape of the filters in the Mel FB is essential for ap-
proximating the perceptual frequency resolution of the human auditory
system. The wider filters capture the lower-frequency components, while the
narrower filters focus on the higher-frequency components. By using a set of
overlapping triangular filters, the Mel FB effectively covers the entire audible
frequency range and provides a representation of the signal in a perceptually
relevant manner.
In the context of deep-fake speech detection, the Mel FB is often applied

to extract Mel-frequency cepstral coefficients (MFCCs) from speech signals.
MFCCs are derived by taking the logarithm of the energy within each Mel
filterbank channel and then applying the discrete cosine transform (DCT)
to obtain a compact representation of the spectral information. The feature
extraction process, utilizing the Mel FB and MFCCs, has found extensive
application in speech recognition and related tasks, as it captures important
perceptual information while reducing the dimensionality of the signal. The
formula to convert a linear frequency (f ) to the Mel scale (m) is as follows:

m = 2595 log10

(
1 +

f

700

)
, (3.1)

Figure 3.2 and Figure 3.3 provides visualizations of the spectrogram repre-
sentations using Mel FB.
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Figure 3.2: Spectrogram of genuine speech signal using Mel FB

Figure 3.3: Spectrogram of fake speech signal using Mel FB
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3.2.2 Constant bandwidth filterbank

In contrast, Constant Bandwidth filterbanks (CBW FB) stand out for their
fixed bandwidth for each filter, irrespective of their center frequency. This
characteristic makes CBW FB particularly useful in certain applications
where a consistent bandwidth is preferred across all frequency channels. The
construction of CBW FB involves the utilization of a consistent bandwidth
parameter, allowing for the computation of center frequencies and channel
count based on the provided lower and upper frequency limits.
To analyze the differences between genuine and fake speech signals as

illustrated in spectrograms. Figure 3.4 and Figure 3.5 provide visualizations
of the spectrogram representations using CBW FB.
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Figure 3.4: Spectrogram of genuine speech signal using CBW FB

Figure 3.5: Spectrogram of fake speech signal using CBW FB
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3.2.3 Gammatone filterbank

The ERB FB is designed to accurately model the response characteristics of
the cochlea in the human auditory system [56,57]. It utilizes filters based on
the Gammatone function, derived from a combination of complex exponential
functions and low-pass filters. These filters adeptly capture both the shape of
cochlear filters and the frequency selectivity inherent in the auditory system.
As a result, the filterbank enhances the representation of low-frequency
components with narrow bandwidths and reduces the presence of high-
frequency components with wider bandwidths, as shown in Figure 3.6. The
integration of the ERB scale further enhances the accuracy by approximating
the frequency resolution of the human auditory system. This integration
allows the ERB FB to better capture the spectral characteristics of auditory
signals and align with human auditory perception [58].
In the ERB FB, the center frequencies are based on the specified upper and

lower frequency limits and the number of channels. These center frequencies
are proportional to the corresponding bandwidths of the filters [59]. The
output obtained from the ERB FB is as follows:

gk(t) = At(n−1) exp(−2πbfERB(fk)t) cos(2πfkt), (3.2)

The amplitude term represented by the Gamma distribution is denoted as
At(n−1) exp(−2πbfERB(fkt)), where A, n, and bf represent the amplitude,
filter order, and bandwidth of the filter, respectively. We apply the fourth
order Gammatone. The formula to convert a linear frequency (f) to the ERB
scale is as follows:

ERB = 24.7(4.37fk + 1), (3.3)

where fk is the k-th center frequency (in kHz) of filterbank.
Figure 3.7 and Figure 3.8 provide visualizations of the spectrogram repre-

sentations using ERB FB.
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Figure 3.6: Frequency response of ERB FB
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Figure 3.7: Spectrogram of genuine speech signal using ERB FB

Figure 3.8: Spectrogram of fake speech signal using ERB FB
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3.3 Procedure of STM implementation

First, the speech signal s(t) undergoes an initial filtering process using a bank
of filters. The output of the k-th channel is expressed as follows:

yk(t) = gk(t) ∗ s(t), (3.4)

where * represents the convolution, gk(t) is impulse response of the k-th
channel of filterbank.
Next, the power envelope is obtained through the application of the Hilbert

transform, followed by squaring the signal. Additionally, LPF represents a
low-pass filter with a cut-off frequency of 64Hz.

e2k(t) = LPF
[
|yk(t) + jHilbert(yk(t))|2

]
, (3.5)

Finally, STM representation can be obtained by applying a two-dimensional
Fourier transform to squared envelope e2k(t), as shown in Eq. (3.6). It is
important to note that the result of the two-dimensional Fourier transform is
typically a matrix comprising complex numbers, where each element consists
of both real and imaginary parts. To obtain the STM representation utilized
in this study, the absolute value of the result is taken.

STM = 2DFFT(log e2k(t)). (3.6)

where 2DFFT represents a two-dimensional fast Fourier transform.
The STM representations of genuine and fake speech signals using Mel FB,

CBW FB, and ERB FB are shown in Figure 3.9 to 3.12.
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Figure 3.9: STM of genuine speech signal using Mel FB
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Figure 3.10: STM of fake speech signal using Mel FB
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Figure 3.11: STM of genuine speech signal using CBW FB
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Figure 3.12: STM of fake speech signal using CBW FB
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Figure 3.13: STM of genuine speech signal using ERB FB
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Figure 3.14: STM of fake speech signal using ERB FB
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Chapter 4

Proposed Method

4.1 Framework

In this section, we first extract STM from original speech signals by employ-
ing the Gammatone filterbank, Hilbert transform, and fast Fourier transform.
In order to enable neural networks to better capture feature information in
STM representations, then present a deep-fake speech detection model that
utilizes an LCNN and BiLSTM. LCNN is a convolutional neural network vari-
ant that is purposefully developed to strike a balance between computational
complexity and performance. The strength of LCNN lies in its utilization of
a max-out activation strategy, which enhances feature map activations. This
characteristic enables faster training and inference times while minimizing the
impact on overall performance. The block diagram of the proposed method
is shown in Figure 4.1

4.2 Feature extraction

Feature extraction holds an essential role in speech detection tasks as it
enables the distinction between different speech signals. Its primary function
is to transform speech signals into a stream of feature vector coefficients that
contain only the necessary information for identifying a particular utterance.
Each speech signal possesses distinct attributes that are embedded within
spoken words. These attributes can be extracted using various techniques,
allowing them to be employed in speech recognition tasks. The process of
feature extraction involves extracting relevant characteristics from speech
signals and capturing essential acoustic and linguistic properties. These
extracted features serve as representations of the underlying speech signals
and carry vital information for subsequent analysis and classification. By
employing appropriate feature extraction techniques, we can uncover specific
attributes within speech signals that are relevant to the identification and
discrimination of different utterances. These extracted features serve as
valuable inputs for subsequent speech recognition systems, enabling accurate
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classification and interpretation of speech.
To obtain the STM representation from the original signal, a series of steps

is followed, the block diagram as shown at the bottom part in Figure4.1.
Initially, the input signal undergoes decomposition into frequency compo-

nents using the Gammatone filterbank, the formula is shown in Eq.(3.2).
The frequency range was set from 50 Hz to 8000 Hz, utilizing 64 channels.
This frequency range was chosen due to the typical perception of speech
signals by human hearing. The lower limit of 50 Hz captures the fundamental
frequency component of speech, while the upper limit of 8000 Hz includes
high-frequency resonances and harmonics. Setting the channel number to 64
aims to enhance spectral information and improve sound resolution. With
64 channels, a finer frequency division is achieved, enabling precise capture
of speech characteristics across various frequency ranges. The increased
channel count provides more frequency detail, leading to a more accurate
representation of spectral features and capturing a wider range of speech
features. However, it’s important to consider the computational and memory
costs associated with higher channel numbers, as they can impact real-
time performance and computational efficiency. Thus, a careful balance was
struck by selecting 64 channels. To accommodate the high-resolution STM
representations, the TM domain underwent resampling at a rate of 1000
Hz, resulting in an STM representation size of [64, 1000]. This process
separates the speech signal into different frequency bands, capturing the
spectral information contained within the signal. The resulting frequency
components represent the distribution of energy across different frequency
ranges.
Next, the squared magnitudes of these frequency components are com-

puted, effectively extracting the power envelope of the signal. The power
envelope represents the overall energy variations in each frequency band over
time. To further refine the power envelope, a low-pass filter is applied,
smoothing out rapid fluctuations and emphasizing the overall temporal
characteristics of the signal. The formula is shown in Eq.(3.5).
In the final step, a two-dimensional spectral analysis is performed on the

power envelope. This analysis captures the interactions between spectral and
temporal modulations in speech signals. By considering both the variations in
frequency components and their corresponding temporal dynamics, the STM
spectrogram is derived. The STM spectrogram provides a comprehensive
representation of the dynamic variations present in the speech signal across
different spectral and temporal scales. The formula is shown in Eq.(3.6).
By incorporating the STM representation into the feature extraction pro-

cess, we can effectively capture the unique patterns and temporal dynamics
that distinguish genuine speech from deep-fake speech. The STM representa-
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tion offers valuable insight into the underlying processes of human auditory
perception and allows us to leverage the dynamic and adaptive properties of
the human auditory system for improved detection accuracy.

4.3 Identification

In order to extract useful information from STM, deep learning approaches
such as BiLSTM have been widely employed. It can effectively model the
temporal dependencies in the STM, which are critical for deep-fake speech
detection tasks. Specifically, BiLSTM has a “memory” mechanism that
allows it to keep track of past information and use it to inform the current
prediction. During the task using BiLSTM, the speech feature sequences
are individually fed into the hidden layers of both the forward LSTM
(LSTM F) and the backward LSTM (LSTM B). This process generates two
feature vectors that encapsulate the forward and backward information of the
speech. Subsequently, the output vectors from these two layers are combined,
forming a merged vector that is passed through two fully connected layers.
Finally, the classification is performed by applying a sigmoid activation
function to compute the score. This is particularly useful for distinguishing
between genuine and fake speech, as speech signals often contain long-term
dependencies. The dimensions of the BiLSTM layers are set to match the
output dimensions of the LCNN. To optimize the model parameters, a binary
cross entropy (BCE) objective function is utilized. The BCE objective
function is defined as follows:

BCE = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (4.1)

In the equation, N represents the total number of samples in the dataset,
while yi and ŷi represent the ground truth and predicted output probability
of the i-th training sample, respectively.
The LCNN-BiLSTM model is trained using the labels, the batch size of all

data is 64, and the epoch number is 30. The optimization process employed
an Adam optimizer with a learning rate of 0.0001. Validation was performed
using the development dataset, and the model achieving the lowest EER
score was considered the best-performing one.
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Figure 4.1: Block diagram of the proposed method
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Chapter 5

Evaluation

5.1 Datasets

In this study, two datasets were employed. The Automatic Speaker Verifi-
cation Spoofing and Countermeasures Challenge (ASVspoof2019) pioneered
the comprehensive treatment of all major attack types, including text-to-
speech, voice conversion, and replay spoofing attacks, effectively covering
real-world voice spoofing scenarios [60]. Another dataset used is the Audio
Deep synthesis Detection Challenge (ADD2023) [61].
The ADD2023 dataset (as shown in Table 5.2) consists of Mandarin

speeches with neutral emotions. The training and development sets have high
signal-to-noise ratios (SNR), while evaluation sets have low SNR with various
real-world background noises. The evaluation set lacks publicly accessible
labels provided by the organizers, therefore the final scores are required to
be submitted to the ADD2023 challenge’s website CODALAB for online
evaluation.
The ASVspoof2019 dataset is partitioned into three subsets: the training

set, development set, and evaluation set, as presented in Table 5.1. Notably,
the evaluation dataset in ASVspoof2019 includes provided labels, facilitating
local evaluation without the need to submit results for external assessment.
The proposed method’s performance was assessed using the Equal Error
Rate (EER). By comparing the results obtained from the two datasets, the
objective was to prove the generalization capability and reliability of the
proposed methods. This was achieved by utilizing a diverse and challenging
collection of samples provided by the two datasets.

5.2 Evaluation metrics

In order to conduct a meaningful comparison between the results obtained
by the proposed method and those from ASVspoof2019 and ADD2023, a
consistent evaluation indicator EER was used. EER is a widely utilized
metric for evaluating the performance of binary classification tasks, partic-
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Table 5.1: Statistic for datasets of the ASVspoof2019 (Durations with three
values denoted with minimum/average/maximum).

Dataset
Number of utterances

Duration (sec)
Genuine Fake Total

Training 2,580 24,072 26,625 0.65/3.42/13.19
Development 2,548 22,296 24,844 0.69/3.49/16.51
Evaluation 7,355 63,882 71,237 0.47/3.14/16.55

Table 5.2: Statistic for datasets of the ADD2023 (Durations with three values
denoted with minimum/average/maximum).

Dataset
Number of utterances

Duration (sec)
Genuine Fake Total

Training 3,012 24,072 27,084 0.86/3.15/60.01
Development 2,307 26,017 28,324 0.86/3.16/60.01
Evaluation - - 111,977 0.35/5.51/217.49

ularly in voiceprint recognition and biometrics domains. It represents the
percentage value of misclassifications, with lower values indicating better
performance. EER is a straightforward and easily interpretable metric,
making it convenient for comparing different classifiers or adjusting classifier
thresholds. Additionally, EER is unaffected by sample imbalance and does
not require equal sample sizes for genuine and fake categories. Hence, it can
be applied to datasets with varying category proportions.

5.3 Comparison experiments

In addition to our proposed method, we conducted a comparative analysis
by re-implementing three well-known features: MFCC, LFCC, and GTCC.
This allowed us to assess the performance of our approach against these
established methods [62–65].
Figure 5.1 illustrates the diagram for the classic features. In the feature

extraction stage, the input signal undergoes initial pre-processing, including
windowing with a window length of 25 ms and a step length of 10 ms.
The window type used is Hamming. Subsequently, a fast Fourier transform
(FFT) is applied to the windowed signal with 512 points. This yields the
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Mel spectrum, Linear spectrum, and Gammatone spectrum after passing
through the respective Mel FB, CBW FB, and ERB FB. Finally, the resulting
spectrum is subjected to logarithmic transformation and discrete Cosine
transform (DCT) to obtain the MFCC, LFCC, and GTCC. The back-end
classifier used here is LCNN-BiLSTM, which shares the same architecture
as the STM experiment. The Mel FB, CBW FB, and ERB FB were
implemented with consistent parameters, including the frequency range and
channel numbers as described in Section 4.2. The frequency range was set
from 50 Hz to 8000 Hz, using 64 channels. Similarly, the parameters for
the LCNN-BiLSTM model were set following the details in Section 4.3. The
batch size for all data was set to 64, and the model was trained for 30 epochs.
The model was optimized using an Adam optimizer with a learning rate of
0.0001.

5.4 Experiment results

To identify effective features for deep-fake speech detection, we conducted
an analysis of the STM representation among genuine and fake speech.
Subsequently, we applied the STM and common features to the LCNN-
BiLSTM model and conducted comparative experiments for assessment.
The experiments were conducted using two datasets: ASVspoof2019 (Table

5.1) and ADD2023 (Table 5.2). In ASVspoof2019, the baseline model
utilized LFCC and GMM, achieving an Equal Error Rate (EER) of 18.89%.
In comparison, our STM-based approach with the ERB FB achieved a
significantly improved EER of 8.33%, representing a performance gain of
10.56%. Notably, the STM (ERB FB) outperformed both STM (Mel FB) and
STM (CBW FB) in terms of performance. These results, as shown in Table
5.3, underscore the effectiveness of integrating STM and the advantages of
using the ERB FB for deep-fake speech detection. The improved performance
can be attributed to the STM’s ability to capture fine-grained temporal and
spectral details, enabling more accurate discrimination between genuine and
fake speech samples.
In the evaluation of the ADD2023 dataset (Table 5.4), We conducted a

performance comparison between our proposed method and the baseline
published by the organizer, which employed LFCC-LCNN and achieved an
EER of 70.37%. In our experiments, we first applied Mel FB, CBW FB, and
ERB FB as input features to the classifier, resulting in EERs of 77.61%,
83.37%, and 73.34%, respectively. Subsequently, we conducted further
comparison experiments and found that the classic features outperformed
the filterbanks. Additionally, the STM representations performed better than
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Figure 5.1: Flow process diagram of classic features: (a) MFCC, (b) LFCC,
(c) GTCC 47



the classic features. Specifically, STM based on ERB FB achieved an EER
of 42.10%, surpassing not only the baseline but also common features like
MFCC (53.36%) and GTCC (63.69%). These results are shown in Table 5.4,
which indicates that STMs provide crucial information for the detection of
genuine and fake speech.

Table 5.3: Comparative results using the ASVspoof2019 dataset

Methods
Equal Error Rate (%)

Development set Evaluation set
STM (Mel FB) 0.04 9.79
STM (CBW FB) 0.09 13.46
STM (ERB FB) 0.02 8.33

Table 5.4: Comparative results using the ADD2023 dataset

Method
Equal Error Rate (%)

Development set Evaluation set
Mel FB 0.26 77.61
CBW FB 0.31 83.37
ERB FB 0.23 73.34
MFCC 0.14 53.36
LFCC 0.19 66.52
GTCC 0.21 63.69

STM (Mel FB) 0.14 47.65
STM (CBW FB) 0.26 55.55
STM (ERB FB) 0.09 42.10

5.5 General discussion

Our method has demonstrated remarkable success in deep-fake speech de-
tection, achieving superior results. However, it is essential to delve into the
underlying principles and address any remaining issues. The STM employed
in our approach can be likened to a cepstrum, capturing subtle cues of
human vocal system activity and speech information in a two-dimensional
representation.
In the case of genuine speech, the STM representation exhibits a distinct

pattern where the vocal system activity information tends to concentrate
near the origin, while speech information spreads around it. This pattern
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is a result of common physiological characteristics shared by humans during
speech production, leading to consistent patterns in the STM representa-
tion. On the other hand, the STM representation of fake speech lacks this
characteristic pattern observed in genuine speech. Machine-generated speech
lacks the consistent patterns found in natural speech due to the absence of
human-like physiological characteristics, leading to less regular waveforms in
speech signals. Leveraging this distinction allows our method to effectively
distinguish between fake and genuine speech.
While our approach has yielded promising outcomes, there are areas where

further improvement is possible. One potential research direction involves
refining the STM representation and optimizing its parameters to enhance
its discrimination power between genuine and fake speech. Fine-tuning the
STM parameters could potentially lead to even better performance, allowing
the method to capture and highlight more relevant features in speech signals.
Additionally, it is crucial to assess the generalization capabilities of our

method across different datasets and potential adversarial attacks. Evalu-
ating the method’s performance on new and diverse datasets will provide
insights into its adaptability to various real-world scenarios. Furthermore,
testing the method against adversarial attacks is vital to ensure its robustness
and reliability in the face of deliberate attempts to deceive the detection
system.
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Chapter 6

Conclusion

6.1 Summary

This study presented in this work centers around the detection of deep-fake
speech, which has become a significant concern in the era of advanced AI
technology. Deep-fake speech refers to the manipulation of audio recordings
to create deceptive or fabricated content that imitates human speech convinc-
ingly. Detecting such manipulations is crucial for maintaining the integrity
of voice-based systems and ensuring the authenticity of speech information.
The proposed method in this research leverages the concept of spectro-

temporal modulation (STM) to extract meaningful features from speech sig-
nals. STM combines both spectral and temporal modulations simultaneously,
offering a comprehensive representation of the dynamic characteristics of a
signal. The process involves transforming the acoustic signal into an auditory
spectrogram and then analyzing this spectrogram to estimate spectral and
temporal modulation content using specialized filters. Incorporating STM
analysis allows for a deeper understanding of human perception and reveals
meaningful characteristics in the speech signal, aiding in the detection of
deep-fake speech.
To investigate the role of feature expressions, three different filterbanks,

namely Mel filterbank (Mel FB), Gammatone filterbank (ERB FB), and
Constant bandwidth filterbank (CBW FB), were employed to implement the
STM independently. The Mel FB is created based on the Mel scale, which
closely matches the way the human ear perceives frequencies. The ERB
FB accurately models the response characteristics of the human auditory
system. The CBW FB, on the other hand, maintains a fixed bandwidth for
each filter across the frequency range. The experiments demonstrated that
STM representations using ERB FB outperformed the other two filterbanks,
showcasing the significance of the chosen feature expression.
The proposed deep-fake speech detection model combines STM represen-

tations with a hybrid deep learning architecture consisting of a Locally
Connected Convolutional Neural Network (LCNN) and Bidirectional Long
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Short-Term Memory (BiLSTM) layers. LCNN, a variant of CNN, is specif-
ically developed to balance computational complexity and performance,
and its max feature map activation strategy ensures faster training and
inference times. BiLSTM is adept at modeling temporal dependencies in
STM representations, which is crucial for deep-fake speech detection.
The evaluation of the proposed method was conducted using two datasets:

ASVspoof2019 and ADD2023. The results demonstrated the superior perfor-
mance of the STM-based approach over traditional features, achieving signifi-
cant improvements in EER on both datasets. The STM representations, with
their ability to capture fine-grained temporal and spectral details, proved
highly effective in distinguishing between genuine and fake speech samples.
While the focus of this study evaluates the performance against base-

line models, conducting comparisons with other existing deep-fake speech
detection systems could provide a more comprehensive assessment of the
proposed method’s effectiveness. Future research efforts might concentrate
on refining the STM representation and fine-tuning its parameters to bolster
the discriminatory capability between genuine and fake speech. Additionally,
investigating the generalization capabilities of the method across different
datasets and potential adversarial attacks would ensure its robustness in
real-world scenarios.

6.2 Contribution

This research makes contributions towards understanding the ability of
cochlear and auditory cortex perception to recognize deep-fake speech and
addresses the challenges posed by malicious production and dissemination of
such content in real-life scenarios. The key contributions are summarized as
follows:

1. By introducing the concept of Spectro-Temporal Modulation (STM)
representation, we gain valuable insights into how the human auditory
system perceives and processes speech. The incorporation of STM in
our deep-fake speech detection model allows us to mimic the dynamic
characteristics of cochlear and auditory cortex perception, enhancing
the system’s ability to differentiate between genuine and deep-fake
speech.

2. We propose an LCNN-BiLSTM model that leverages STM represen-
tations to achieve highly effective deep-fake speech detection. Our
method outperforms traditional features and other filterbank config-
urations, showcasing its capability to identify maliciously generated
speech with better accuracy and reliability.
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3. The proliferation of deep-fake speech poses significant threats to voice-
based applications, including voice assistants, voice authentication, and
audio content verification. Our work provides a useful solution to
mitigate these threats and reduce the negative impact of maliciously
produced or disseminated deep-fake speech in real-life scenarios.

4. Our work provides theoretical support for the design and implemen-
tation of deep-fake speech detection systems. The use of STM rep-
resentations, coupled with the LCNN-BiLSTM model, demonstrates
the feasibility and efficacy of integrating auditory-inspired features for
reliable and practical deep-fake speech detection.

6.3 Remaining works

The future work mainly focuses on the following points:

1. It will be crucial to delve deeper into exploring the specific physics-
based acoustic features that can be effectively captured and represented
by the STM representation. Understanding the underlying mechanisms
and intricacies of acoustic signals in relation to STM will enable us to
optimize the representation and enhance its discriminative capabili-
ties even further. This comprehensive investigation can lead to the
identification of key acoustic attributes that contribute significantly to
the detection of genuine and fake speech, thus improving the overall
accuracy of the STM-based system.

2. To ensure the practical applicability and generalization ability of the
proposed approach, the system’s performance should be evaluated
on a broader range of datasets that encompass different languages,
accents, and speech styles. This broader evaluation will help verify the
effectiveness and robustness of the STM-based detection system in real-
world scenarios and across diverse populations. By testing the system
on varied datasets, we can assess its ability to handle the inherent
variations in speech characteristics and adapt to different linguistic
nuances, making it more reliable and versatile in practical applications.
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