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Speech content Fake speech generated by
machines lacks these human-
Human vocal system activity like characteristics

: Although many Challenges and methods are proposed In deep-fake speech detection

tasks, 1t Is difficult for machines to precisely distinguish them (Khalighinejad, 2019).
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Spectro-temporal Modulation (STM) combines spectral and

temporal modulations, providing a way to mimic the dynamic ® Developing an effective technique for detecting deep-fake speech, by analyzing how the
characteristics of the human auditory system. human auditory mechanism perceives and processes speech.

® The ultimate goal 1s to mitigate the negative impact of maliciously produced or disseminated

(Shamma, 2004) revealed that neurons in the auditory cortex fake speech In various real-life scenarios.
system can decompose spectrograms into STM representations. ; <
This finding has been shown to explain various psychoacoustic DATASETS & METRIC

phenomena.
(Carlyon, 2005) introduced an STM-based method for audio

classification, and this approach has demonstrated Its

\ effectiveness. / Equal Error Rate (EER)
® [t is a performance metric when False Accept Rate (FAR) and False Rejection Rate (FRR)

are equal.
PROPOSED METHOD ® The smaller value of EER has the better performance.

1. The Automatic Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof)
2. Audio Deep synthesis Detection challenge (ADD)
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> < CBW FB 0.31 83.37
: : : ERB FB 0.23 73.34
® |n different feature expressions, the result of ERB FB is better than Mel FB and CBW FB. MECC 0.14 53 36
® STM representation based on ERB FB shows the better results than other approaches LFCC 0.19 66.52
(MFCC, LFCC, GTCOQ). AL e 8 0.21 63.69
® The results indicate that STMs could effectively distinguish between genuine and fake S%T&” ((chgi’]vFl?B)) 8;_2 g;gz
. Speech, /| _STM (ERB FB) 0.09 42.10 B
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CONCLUSION

€ By analyzing the concept of STM representation, we gain valuable insights into how the human auditory mechanism perceives and processes speech.
€ \\e introduced a LCNN-BIiLSTM model that utilizes STM representations for efficient deep-fake speech detection. The approach demonstrated better

performance compared to common features.
& Our work offers theoretical support for a fake speech detection system, which has the potential to reduce the negative impact of maliciously produced

or disseminated deep-fake speech in real-life scenarios.
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