
Efficient Multitask Feature and Relationship
Learning

Han Zhao, Otilia Stretcu, Renato Negrinho, Alex Smola, Geoff Gordon
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

{han.zhao, ostretcu, negrinho, ggordon}@cs.cmu.edu
alex@smola.org

Abstract

We propose a multi-convex framework for multitask learning that improves pre-
dictions by learning relationships both between tasks and between features. Our
framework is a generalization of related methods, that either learn task relationships,
or feature relationships, but not both. We start with a hierarchical Bayesian model,
and use the empirical Bayes method to transform the underlying inference problem
into a multi-convex problem. To tackle the multi-convex optimization problem, we
propose a block coordinate-wise minimization algorithm that has a closed form
solution for each block subproblem. Naively these solutions would be expensive
to compute, but by using the theory of doubly stochastic matrices, we are able to
reduce the covariance learning subproblem to a minimum-weight perfect matching
problem on a complete bipartite graph, and solve it analytically and efficiently. To
solve the weight learning subproblem, we propose three different strategies that
can be used no matter whether the instances are shared by multiple tasks or not. We
demonstrate the efficiency of our method on both synthetic datasets and real-world
datasets. Experiments show that the proposed optimization method is orders of
magnitude faster than the previous projected gradient method, and our model is
able to exploit the correlation structures among multiple tasks and features.

1 Introduction

Multitask learning has received considerable interest in the past decades [8, 11, 1, 2, 14, 16, 22, 21, 15].
One of the underlying assumptions behind many multitask learning algorithms is that the tasks are
related to each other. Hence, a key question is how to define the notion of task relatedness, and how to
capture it in the learning formulation. A common assumption is that tasks can be described by weight
vectors, and that these vectors are sampled from a shared prior distribution [16, 22, 23]. Another strand
of work assumes common feature representations to be shared among multiple tasks, and the goal is
to learn the shared representation as well as task-specific parameters simultaneously [19, 8, 10, 2].
Moreover, when structure about multiple tasks is available, e.g., task-specific descriptors [6] or a
task similarity graph [11], regularizers can often be incorporated into the formulation to explicitly
penalize hypotheses that are not consistent with the given structure.

We propose a multi-convex framework for multitask learning. Our method improves predictions over
tabula rasa learning by assuming that all the task vectors are sampled from a common, shared prior.
There have been several attempts to improve predictions along this direction by either learning the
relationships between different tasks [22], known as Multitask Relationship Learning (MTRL), or
by exploiting the relationships between different features [2], which is known as Multitask Feature
Learning (MTFL). Zhang and Schneider [21] proposed a multitask learning framework where both the
task and feature relationships are inferred from data by assuming a sparse matrix-normal penalty on
both the task and feature representations. Similar to their approach, our multitask learning framework

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

is a generalization of both MTRL and MTFL, which learns the relationships both between tasks and
between features simultaneously. This property is favorable for applications where we not only aim
for better generalization, but also seek to have a clear understanding about the relationships among
different tasks. However, as we will see shortly, unlike the sparse regularization approach, our model
makes no sparsity assumptions and leads to a much more efficient optimization method. We term our
proposed framework FEature and Task Relationship learning (FETR).

Contributions. We propose a principled model for multitask learning that learn task and feature
relationships simultaneously: both MTFL and MTRL can be viewed as special cases of FETR. On
the optimization side, we design an efficient solver for the weight matrix with linear convergence rate
guarantee, which is an exponential acceleration over existing works. Our algorithm computes the
two covariance matrices in closed form, being the first that does not require any numerical iterative
schemes. To the best of our knowledge, all existing works have to resort to expensive generic matrix
optimization algorithms. We demonstrate the efficiency of the proposed optimization algorithm by
comparing it with the projected gradient descent algorithm [21], showing that it always converges
orders of magnitude faster and often converges to a better solution. We test the statistical performance
of FETR on modeling real-world related tasks. Results show that FETR is not only able to give better
predictions, but can also effectively exploit the correlation structures among multiple tasks, providing
a better way to visualize the correlations between both the features and the tasks.

2 Multitask Feature and Relationship Learning

We consider the following setup. We are given m learning tasks {Ti}mi=1, where for each learning
task Ti we have access to a training set Di with ni data instances (xji , y

j
i), j ∈ [ni]. Here we focus

on the supervised learning setting where xji ∈ Xi ⊆ Rd and yji ∈ Yi, where Yi = R for a regression
problem and Yi = {1,−1} for a binary classification problem. For ease of discussion, in what
follows, we will assume our model for each task Ti to be a linear regression. However, our approach
can also be translated into a classification setting where the predictor is a logistic regression. Due to
space limit, we only provide proof sketches of the lemmas and theorems presented in the paper, and
we refer interested readers to the appendix for detailed proofs.

In the linear regression model, the likelihood function for task i is given by: yji | xji ,wi, εi ∼
N (wT

i x, ε
2
i), where N (m,Σ) is the multivariate normal distribution with mean m and covariance

matrix Σ. Let W = (w1, . . . ,wm) ∈ Rd×m be the model parameter (regression weights) for m
different tasks. Applying a hierarchical Bayes approach, we specify a prior distribution over the
model parameter W . Specifically, we define the prior distribution over W to be

W | ξ,Ω1,Ω2 ∼
(

m∏
i=1

N (wi | 0, ξiId)
)
q(W | Ω1,Ω2) (1)

where Id is a d× d identity matrix and 0 ∈ Rd is a d-dimensional vector of all 0s. The form of q(W |
Ω1,Ω2) is given by q(W | Ω1,Ω2) = MN d×m(W | 0d×m,Ω1,Ω2), whereMN d×m(M,A,B)
denotes a matrix-variate normal distribution [13] with mean M ∈ Rd×m, row covariance matrix
A ∈ Sd++ and column covariance matrix B ∈ Sm++.

Given the prior distribution over W and the likelihood function, a standard Bayesian inference
approach applied here would be to specify another prior distribution over both covariance matrices
Ω1 and Ω2 and then compute the above exact posterior distribution. However, this is computationally
intractable in our case, so instead of computing the integration exactly, we take an empirical Bayes
approach to approximate the intractable integration above by p(W | X,y) ≈ maxΩ1,Ω2

p(y |
X,W)p(W | Ω1,Ω2), which leads us to the following optimization problem:

minimize
W,Ω1�0,Ω2�0

m∑
i=1

1

ξ2
i

wT
i wi+m log |Ω1|+d log |Ω2|+

m∑
i=1

1

ε2i

ni∑
j=1

(yji−w
T
i x

j
i)

2+tr(Ω−1
1 WΩ−1

2 WT) (2)

It is worth pointing out here that the optimal value of (2) may not be achieved since the constraint set
is open. We will fix this technical issue by imposing boundedness constraints on both Ω1 and Ω2.
For simplicity of later discussion, we will assume that ξi = ξ and εi = ε, ∀i ∈ [m].

2

3 Multi-convex Optimization

It is not hard to see that the optimization problem in (2) is not convex since m log |Ω1|+ d log |Ω2| is
a concave function of Ω1 and Ω2 [7]. Also, (2) is unbounded from below. To handle these technical
issues, we introduce a boundedness constraint into the constraint set of Ω1 and Ω2: 1

uId � Ω1 � 1
l Id

and 1
uIm � Ω2 � 1

l Im, where u > l > 0 are constants. Technically, the boundedness constraint
make the feasible sets for Ω1 and Ω2 compact, hence by the extreme value theorem minimum is
guaranteed to be achieved since the objective function is continuous. Next, we apply a well known
transformation to both Ω1 and Ω2 so that the new optimization problem is multi-convex in terms of
the transformed variables. We define Σ1 , Ω−1

1 and Σ2 , Ω−1
2 . Both Σ1 and Σ2 are well-defined

because Ω1 and Ω2 are constrained to be positive definite matrices. The transformed optimization
formulation based on W,Σ1 and Σ2 is:

minimize
W,Σ1,Σ2

m∑
i=1

ni∑
j=1

(yji −wT
i x

j
i)

2 + η

m∑
i=1

wT
i wi − ρ(m log |Σ1|+ d log |Σ2|) + ρtr(Σ1WΣ2W

T)

subject to lId � Σ1 � uId, lIm � Σ2 � uIm (3)

where we define η = (ε/ξ)2 and ρ = ε2 to simplify the notation.
Proposition 3.1. The objective function in (3) is multi-convex.

Based on the multi-convex formulation, we propose a block coordinate-wise minimization algorithm
to optimize the objective given in (3). In each iteration k we alternatively minimize over W with Σ1

and Σ2 fixed, then minimize over Σ1 with W and Σ2 fixed, and lastly minimize Σ2 with W and Σ1

fixed. The whole procedure is repeated until a stationary point is found or the decrease in the objective
function is less than a pre-specified threshold. In what follows, we assume n = ni,∀i ∈ [m] to
simplify the notation. Let Y = (y1, . . . ,ym) ∈ Rn×m be the labeling matrix and X ∈ Rn×d be the
feature matrix shared by all the tasks. Using this notation, the objective function can be equivalently
expressed in matrix form as:

minimize
W,Σ1,Σ2

||Y −XW ||2F + η||W ||2F + ρ||Σ1/2
1 WΣ

1/2
2 ||2F − ρ(m log |Σ1|+ d log |Σ2|)

subject to lId � Σ1 � uId, lIm � Σ2 � uIm (4)

3.1 Optimization w.r.t. W

In order to minimize over W when both Σ1 and Σ2 are fixed, we solve the following subproblem:

minimize
W

h(W) , ||Y −XW ||2F + η||W ||2F + ρ||Σ1/2
1 WΣ

1/2
2 ||2F (5)

This is an unconstrained convex optimization problem. We present three different algorithms to find
the optimal solution of this subproblem. The first one guarantees to find an exact solution in closed
form in O(m3d3) time, by using the isomorphism between Rd×m and Rdm. The second one does
gradient descent with fixed step size to iteratively refine the solution, and we show that in our case a
linear convergence rate can be guaranteed. The third one finds the optimal solution by solving the
Sylvester equation [3] characterized by the first-order optimality condition.
Proposition 3.2. (5) can be solved in closed form in O(m3d3 +mnd2) time; the optimal vec(W ∗)

has the following form:
(
Im ⊗ (XTX) + ηImd + ρΣ2 ⊗ Σ1

)−1
vec(XTY).

W ∗ can then be obtained simply by reformatting vec(W ∗) into a d×m matrix. The computational
bottleneck in the above procedure is in solving an md×md system of equations, which scales as
O(m3d3) if no further sparsity structure is available. This can be intractable even for moderate m
and d. In such cases, instead of computing an exact solution to (5), we can use gradient descent with
fixed step size to obtain an approximate solution.

The objective function h(W) is differentiable and its gradient can be obtained inO(m2d+md2) time
as follows: ∇Wh(W) = XT (Y −XW) + ηW + ρΣ1WΣ2. Let λi(A) be the ith largest eigenvalue
of a real symmetric matrix A. We provide a linear convergence guarantee for the gradient method in
Thm. 3.1. Our proof technique is adapted from Nesterov [17] where we extend it to matrix function.
Theorem 3.1. Let λl = λd(X

TX) + η + ρl2, λu = λ1(XTX) + η + ρu2 and κ = λu/λl, the
condition number. Choose 0 < t ≤ 2/(λu + λl). For all ε > 0, gradient descent with step size t
converges to the optimal solution within O(κ log(1/ε)) steps.

3

The computational complexity to achieve an ε approximate solution using gradient descent isO(nd2 +
κ log(1/ε)(m2d+md2)). Compared with the O(m3d3 +mnd2) complexity for the exact solution,
the gradient descent algorithm scales much better provided the condition number κ is not too large.
As a side note, when the condition number is large, we can also effectively reduce the iteration
complexity to O(

√
κ log(1/ε)) by using the conjugate gradient method [18].

A Sylvester equation [5] is a matrix equation of the form AX +XB = C, where the goal is to find
a solution matrix X given A,B and C. For this problem, there are efficient numerical algorithms
with highly optimized implementations that can obtain a solution within cubic time. For example,
the Bartels-Stewart algorithm [3] solves the Sylvester equation by first transforming A and B into
Schur forms by QR factorization, and then solves the resulting triangular system via back-substitution.
Our third approach is based on the observation that we can equivalently transform the first-order
optimality equation into a Sylvester equation by multiplying both sides of the equation by Σ−1

1 :

Σ−1
1 (XTX + ηId)W +W (ρΣ2) = Σ−1

1 XTY (6)

Then finding the optimal solution of the subproblem amounts to solving the above Sylvester equation.
Specifically, the solution can be obtained using the Bartels-Stewart algorithm in O(m3 + d3 + nd2).

Remark. Both the gradient descent and the Bartels-Stewart algorithm find optimal solutions in cubic
time. However, the gradient descent algorithm is more widely applicable than the Bartels-Stewart
algorithm: the Bartels-Stewart algorithm only applies to the case where all the tasks share the same
instances, so that we can write down the matrix equation explicitly, while gradient descent can be
applied where each task has different number of inputs and those inputs are not shared among tasks.
On the other hand, as we will see shortly in the experiments, in practice the Bartels-Stewart algorithm
is faster than gradient descent, and provides a more numerically stable solution.

3.2 Optimization w.r.t. Σ1 and Σ2

Before we delve into the detailed analysis below, we first list the final algorithms used to optimize Σ1

and Σ2 in Alg. 1 and Alg. 2, respectively. They are remarkably simple: each algorithm only involves
one SVD, one truncation and two matrix multiplications. The computational complexities of Alg. 1
and Alg. 2 are bounded by O(m2d+md2 + d3) and O(m2d+md2 +m3), respectively.

Algorithm 1 Minimize Σ1

Input: W , Σ2 and l, u.
1: [V, ν]← SVD(WΣ2W

T).
2: λ← T[l,u](m/ν).
3: Σ1 ← V diag(λ)V T .

Algorithm 2 Minimize Σ2

Input: W , Σ1 and l, u.
1: [V, ν]← SVD(WTΣ1W).
2: λ← T[l,u](d/ν).
3: Σ2 ← V diag(λ)V T .

Due to the symmetric roles of Σ1 and Σ2 in (4), we focus on analyzing the optimization w.r.t. Σ1. A
completely symmetric analysis can be applied to Σ2 as well. In order to minimize over Σ1 when W
and Σ2 are fixed, we solve the following subproblem:

minimize
Σ1

tr(Σ1WΣ2W
T)−m log |Σ1|, subject to lId � Σ1 � uId (7)

Although (7) is a convex optimization problem, it is computationally expensive to solve using off-the-
shelf algorithms, e.g., the interior point method, because of the constraints as well as the iterative
nature of these numerical approximate schemes. Surprisingly, we can find an exact and closed form
optimal solution to this problem, using tools from the theory of doubly stochastic matrices [9] and
reducing (7) into a minimum-weight bipartite graph matching problem. Due to the space limit, we
defer our detailed derivation and the proof of correctness of Alg. 1 and Alg. 2 into appendix. The
soft-thresholding operator T[l,u](z) used in line 2 of both algorithms are defined as: T[l,u](z) = z if
z ∈ [l, u], T[l,u](z) = l if z < l and T[l,u](z) = u if z > u.

4 Experiments

4.1 Convergence Analysis

We first investigate the efficiency and scalability of the three different algorithms for minimizing
w.r.t. W on synthetic data sets. For each experiment, we generate a synthetic data set which consists

4

of n = 104 instances that are shared among all the tasks. All the instances are randomly sampled
uniformly from [0, 1]d. We gradually increase the dimension of features, d, and the number of
tasks, m to test scalability. The first algorithm implements the closed form solution by explicitly
computing the md×md tensor product matrix and then solving the linear system. The second one
is the proposed gradient descent, and the last one uses the Bartels-Stewart algorithm to solve the
equivalent Sylvester equation to compute W . We use open source toolkit scipy whose backend
implementation uses highly optimized Fortran code. For all the synthetic experiments we set l = 0.01
and u = 100, which corresponds to a condition number of 104. We fix the coefficients η = 1.0 and
ρ = 1.0. The experimental results are shown in Fig. 1a.

As expected, the closed form solution does not scale to problems of even moderate size due to its large
memory requirement. In practice the Bartels-Stewart algorithm is about one order of magnitude faster
than the gradient descent method when either m or d is large. It is also worth pointing out here that
the Bartels-Stewart algorithm is the most numerically stable algorithm among the three based on our
observations. We also compare our proposed coordinate minimization algorithm with the previous
projected gradient method to solve the optimization problem (4). Specifically, the projected gradient
method updates W,Σ1 and Σ2 in each iteration and then projects Σ1 and Σ2 onto the corresponding
feasible regions. In this experiment we set the number of instances to be 104, the dimension of
feature vectors to be 104 and the number of tasks to be 10. All the instances are shared among all the
tasks, so that the Sylvester solver is used to optimize W in coordinate minimization. We repeat the
experiments 10 times and report the log function values versus the time used by these two algorithms
(Fig. 1b). It is clear from this synthetic experiment that our proposed algorithm not only converges
much faster than the projected gradient descent, but also achieves better results.

5.8e-04

1.2e-03

1.9e-03

2.5e-03

d
=

10

m= 10

2.4e-03

1.5e-02

2.7e-02

4.0e-02
m= 100

3.4e-02

1.6e+00

3.1e+00

4.7e+00

m= 1000

3.7e-03

1.3e-02

2.3e-02

3.3e-02

d
=

10
0

6.6e-03

1.6e+00

3.1e+00

4.7e+00

0.0e+00

4.2e-01

8.4e-01

1.3e+00

3.7e-01

1.7e+00

3.1e+00

4.4e+00

d
=

10
00

0.0e+00

1.4e+00

2.9e+00

4.3e+00

0.0e+00

1.4e+01

2.8e+01

4.3e+01

Closed Gradient Sylvester

(a) Each experiment is repeated 10 times. We plot the
mean run time (seconds) and the standard deviation un-
der each experimental configuration. The closed form
solution does not scale when md ≥ 104.

0 10 20 30 40 50

Time (seconds)

4

6

8

10

12

14

16

lo
g
 fu

nc
tio

n
va

lu
e

Coordinate Minimization v.s. Projected Gradient Descent

Coordinate Minimization
Projected Gradient Descent

(b) The convergence speed of coordinate minimization
versus projected gradient descent. All the experiments
are repeated 10 times.

Figure 1: Comparisons of convergence speed of different algorithms on synthetic datasets.

Table 1: Mean squared error on the SARCOS data and the mean of normalized mean squared error
(MNMSE) on the school dataset across 10-fold cross-validation. For the SARCOS data, each column
corresponds to one task (DOF).

SARCOS School
Method 1st 2nd 3rd 4th 5th 6th 7th MNMSE
STL 31.40 22.90 9.13 10.30 0.14 0.84 0.46 0.9882 ± 0.0196
MTFL 31.41 22.91 9.13 10.33 0.14 0.83 0.45 0.8891 ± 0.0380
MTRL 31.09 22.69 9.08 9.74 0.14 0.83 0.44 0.9007 ± 0.0407
SPARSE 31.13 22.60 9.10 9.74 0.13 0.83 0.45 0.8451 ± 0.0197
FETR 31.08 22.68 9.08 9.73 0.13 0.83 0.43 0.8134 ± 0.0253

4.2 Results on Benchmark Datasets

Robot Inverse Dynamics This data relates to an inverse dynamics problem for a seven degree-
of-freedom (DOF) SARCOS anthropomorphic robot arm [20]. The goal of this task is to map
from a 21-dimensional input space (7 joint positions, 7 joint velocities, 7 joint accelerations) to the
corresponding 7 joint torques. Hence there are 7 tasks and the inputs are shared among all the tasks.

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2
1
2
0
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0

9
8

7
6

5
4

3
2

1

FETR feature correlation matrix

0.8

0.4

0.0

0.4

0.8

1 2 3 4 5 6 7

7
6

5
4

3
2

1

FETR task correlation matrix

0.8

0.4

0.0

0.4

0.8

Figure 2: Visualization of the correlation matrices of feature and task vectors learned by FETR.

The training set and test set contain 44,484 and 4,449 examples, respectively. We further partition the
training set into a development set and a validation set, which contain 31,138 and 13,346 instances.

School Data This dataset consists of the examination scores of 15,362 students from 139 secondary
schools [12]. It has 27 input features, and contains 139 tasks. In the school dataset, instances are not
shared among different tasks, hence we use our gradient descent solver for W instead of the Sylvester
equation solver. We use 10-fold cross-validation to generate training and test datasets, and for each
partition we compute the mean of normalized mean squared error (MNMSE) over 139 tasks. The
normalized mean squared error is defined as the ratio of the MSE and the variance on a task. We
show the mean MNMSE and its standard deviation across 10 cross-validation folds.

We compare FETR with multitask feature learning [10] (MTFL), multitask relationship learning [22]
(MTRL), and the sparse multitask learning variant [21] (SPARSE). Both MTFL and MTRL can be
treated as different special cases of our model, while SPARSE is a variant of FETR which assumes
sparsity structure of both covariance matrices without the boundedness constraints. We use ridge
regression as our baseline model, and denote it as single task learning (STL). All the methods share
the same experimental setting, including model selection. In all the experiments we fix l = 10−3 and
u = 103. The hyperparameters range from η, ρ ∈ {10−5, . . . , 102}, and we use the validation set for
model selection. For each method, the best model on the validation set is used to do prediction. The
results for both datasets are summarized in Table 1 (the lower the better). Among all the methods,
FETR consistently achieves lower test set MSEs. FETR can learn both covariance matrices over
features and tasks simultaneously, while the other two methods can only estimate one of them. We
show the covariance matrices estimated by FETR in Fig. 2. As we can see, the task correlation matrix
learned by FETR successfully exhibits a block diagonal structure of the underlying task, where the
last three torques are positively correlated with each other, while the first four and the last three
torques are negatively correlated.

5 Conclusion

We develop a multi-convex framework for multitask learning that improves predictions by learning
relationships both between tasks and between features. Our framework admits a multi-convex
formulation, which allows us to design an efficient block coordinate-wise algorithm to optimize. To
solve the weight learning subproblem, we propose three different strategies that can be used no matter
whether the instances are shared by multiple tasks or not. By using the theory of doubly stochastic
matrices, we are able to reduce the underlying matrix optimization subproblem to a minimum weight
perfect matching problem, and solve it exactly in closed form. To the best of our knowledge, all the
previous works have to resort to expensive iterative schemes to solve this problem. Experiments show
that our method is orders of magnitude faster than the previous projected gradient descent method.

References
[1] A. Argyriou, M. Pontil, Y. Ying, and C. A. Micchelli. A spectral regularization framework for

multi-task structure learning. In Advances in neural information processing systems, 2007.

6

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning,
73(3):243–272, 2008.

[3] R. H. Bartels and G. Stewart. Solution of the matrix equation AX+ XB= C [F4]. Communications
of the ACM, 15(9):820–826, 1972.

[4] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6. Athena
Scientific Belmont, MA, 1997.

[5] R. Bhatia and P. Rosenthal. How and why to solve the operator equation ax- xb= y. Bulletin of
the London Mathematical Society, 29(01):1–21, 1997.

[6] E. V. Bonilla, F. V. Agakov, and C. Williams. Kernel multi-task learning using task-specific
features. In International Conference on Artificial Intelligence and Statistics, pages 43–50,
2007.

[7] S. Boyd and L. Vandenberghe. Convex optimization. 2004.

[8] R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[9] F. Dufossé and B. Uçar. Notes on birkhoff–von neumann decomposition of doubly stochastic
matrices. Linear Algebra and its Applications, 497:108–115, 2016.

[10] A. Evgeniou and M. Pontil. Multi-task feature learning. Advances in neural information
processing systems, 19:41, 2007.

[11] T. Evgeniou and M. Pontil. Regularized multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 109–117.
ACM, 2004.

[12] H. Goldstein. Multilevel modelling of survey data. Journal of the Royal Statistical Society.
Series D (The Statistician), 40(2):235–244, 1991.

[13] A. K. Gupta and D. K. Nagar. Matrix variate distributions, volume 104. CRC Press, 1999.

[14] T. Kato, H. Kashima, M. Sugiyama, and K. Asai. Multi-task learning via conic programming.
In Advances in Neural Information Processing Systems, pages 737–744, 2008.

[15] Y. Li, X. Tian, T. Liu, and D. Tao. Multi-task model and feature joint learning. In Proceedings
of the 24th International Conference on Artificial Intelligence, pages 3643–3649. AAAI Press,
2015.

[16] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l 2, 1-norm minimization.
In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pages
339–348. AUAI Press, 2009.

[17] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

[18] J. R. Shewchuk et al. An introduction to the conjugate gradient method without the agonizing
pain, 1994.

[19] S. Thrun. Explanation-based neural network learning. In Explanation-Based Neural Network
Learning, pages 19–48. Springer, 1996.

[20] S. Vijayakumar and S. Schaal. Locally weighted projection regression: Incremental real time
learning in high dimensional space. In Proceedings of the Seventeenth International Conference
on Machine Learning, pages 1079–1086. Morgan Kaufmann Publishers Inc., 2000.

[21] Y. Zhang and J. G. Schneider. Learning multiple tasks with a sparse matrix-normal penalty. In
Advances in Neural Information Processing Systems, pages 2550–2558, 2010.

[22] Y. Zhang and D.-Y. Yeung. A convex formulation for learning task relationships in multi-task
learning. 2010.

[23] Y. Zhang and D.-Y. Yeung. Multi-task learning using generalized t process. In AISTATS, pages
964–971, 2010.

7

A Derivation on Solving Covariance Matrices

Since Σ2 ∈ Sm++, it follows that WΣ2W
T ∈ Sd+. Without loss of generality, we can reparametrize

Σ1 = UΛUT , where Λ = diag(λ1, . . . , λd) with u ≥ λ1 ≥ λ2 · · · ≥ λd ≥ l and U ∈ Rd×d with
UTU = UUT = Id using spectral decomposition. Similarly, we can represent WΣ2W

T = V NV T

where V ∈ Rd×d, V TV = V V T = Id and N = diag(ν1, . . . , νd) with 0 ≤ ν1 ≤ · · · ≤ νd. Note
that the eigenvectors in N corresponds to eigenvalues in increasing order rather than decreasing order,
for reasons that will become clear below.

Using the new representation and realizing that U is an orthonormal matrix, we have

log |Σ1| = log |UΛUT | = log |Λ|
and

tr(Σ1WΣ2W
T) = tr(ΛUTV NV TU)

Set K = UTV . Since both U and V are orthonormal matrices, K is also an orthonormal matrix. We
can further transform tr(ΛUTV NV TU) to be

tr(ΛUTV NV TU) = tr((ΛK)(KN)T)

Note that the mapping betweenU andK is bijective since V is a fixed orthonormal matrix. Combining
all the results above, we can equivalently transform the optimization problem (7) into the following
new form:

minimize
K,Λ

−m log |Λ|+ tr((ΛK)(KN)T)

subject to l diag(1d) ≤ Λ ≤ u diag(1d)

KTK = KKT = Id

(8)

where 1d is a d-dimensional vector of all ones.

At first glance one may question that the new form of optimization is more complicated to solve
since it is not even a convex problem due to the quadratic equality constraint. However, as we will
see shortly, the new form helps to decouple the interaction between K and Λ in that K does not
influence the first term −m log |Λ|. This implies that we can first partially optimize over K, finding
the optimal solution as a function of Λ, and then optimize over Λ. Mathematically, it means:

min
K,Λ
−m log |Λ|+ tr((ΛK)(KN)T)

⇔min
Λ
−m log |Λ|+ min

K
tr((ΛK)(KN)T) (9)

Consider the sub-minimization problem over K:

tr((ΛK)(KN)T) =

d∑
i=1

d∑
j=1

λiK
2
ijνj = λTPν

where we define P = K ◦ K, i.e., the elementwise product of K, λ = (λ1, · · · , λd)T and ν =
(ν1, · · · , νd)T . Since K is an orthonormal matrix, we have the following two equations hold:

d∑
j=1

Pij =

d∑
j=1

K2
ij = 1,

d∑
i=1

Pij =

d∑
i=1

K2
ij = 1, ∀i, j ∈ [d]

which implies that P is a doubly stochastic matrix [9]. The partial minimization over K can be
equivalently solved by the partial minimization over P :

min
K

tr((ΛK)(KN)T) = min
P

λTPν (10)

Note that the above minimization problem is a linear program of a doubly stochastic matrix P over
its feasible set, which is known as the Birkhoff polytope. In order to solve it, we need to introduce the
following theorems:
Theorem A.1 (Optimality of extreme points [4]). Consider the minimization of a linear programming
problem over a polyhedron P . Suppose that P has at least one extreme point and that there exists an
optimal solution. Then there exists an optimal solution which is an extreme point of P .

8

Definition A.1 (Birkhoff polytope). The Birkhoff polytope Bd is the set of d× d doubly stochastic
matrices. Bd is a convex polytope.

Theorem A.2 (Birkhoff-von Neumann theorem). Let Bd be the Birkhoff polytope. Bd is the convex
hull of the set of d× d permutation matrices. Furthermore, the vertices (extreme points) of Bd are
the permutation matrices.

Lemma A.1. There exists an optimal solution P to the optimization problem (10) that is a d × d
permutation matrix.

Given that there exists an optimal solution that is a permutation matrix, we can reduce (10) into a
minimum-weight perfect matching problem on a complete bipartite graph:

Definition A.2 (Minimum-weight perfect matching). Let G = (V,E) be an undirected graph with
edge weight w : E → R+. A matching in G is a set M ⊆ E such that no two edges in M have a
vertex in common. A matching M is called perfect if every vertex from V occurs as the endpoint of
some edge in M . The weight of a matching M is w(M) =

∑
e∈M w(e). A matching M is called a

minimum-weight perfect matching if it is a perfect matching that has the minimum weight among all
the perfect matchings of G.

We construct the graph as follows: for any λ, ν ∈ Rd+, we can construct a weighted d− d bipartite
graph G = (Vλ, Vν , E, w) as follows:

• For each λi, construct a vertex vλi
∈ Vλ, ∀i.

• For each νj , construct a vertex vνj ∈ Vν , ∀j.
• For each pair (vλi

, vνj), construct an edge e(vλi
, vνj) ∈ E with edge wight

w(e(vλi , vνj)) = λiνj .

Theorem A.3. The minimum value of (10) is equal to the minimum weight of a perfect matching
on G = (Vλ, Vν , E, w). Furthermore, the optimal solution P of (10) can be constructed from the
minimum-weight perfect matching on G.

Perhaps the most interesting and surprising part is that, by a combinatorial analysis, we do not even
need to run standard matching algorithms to solve our matching problem!

Theorem A.4. Let λ = (λ1, . . . , λd) and ν = (ν1, . . . , νd) with λ1 ≥ · · · ≥ λd and ν1 ≤ · · · ≤ νd.
The minimum-weight perfect matching on G is π∗ = {(vλi

, vνi) : 1 ≤ i ≤ d} with the minimum
weight w(π∗) =

∑d
i=1 λiνi.

The proof of this theorem depends on an exchange lemma we prove in appendix (B.5) and uses
induction on d. The permutation matrix that achieves the minimum weight is P ∗ = Id since
π∗(λi) = νi. Note that P = K ◦K, it follows that the optimal K∗ is also Id. Hence we can solve
for the optimal U∗ matrix by solving the equation U∗TV = Id, which leads to U∗ = V .

Now plug in the optimal K∗ = Id into (9). The optimization w.r.t. Λ decomposes into d independent
optimization problems, each of which being a simple scalar optimization problem:

minimize
λ

d∑
i=1

λiνi −m log λi

subject to l ≤ λi ≤ u, ∀i = 1, . . . , d

(11)

Depending on whether the value m/νi is within the range [l, u], the optimal solution λ∗i for each
scalar minimization problem may take different forms. Define a soft-thresholding operator T[l,u](z):

T[l,u](z) =


l, z < l

z, l ≤ z ≤ u
u, z > u

(12)

Using this soft-thresholding operator, we can express the optimal solution λ∗i as λ∗i = T[l,u](m/νi),
as shown in the pseudocode listed at the beginning of this section to optimize Σ1 and Σ2.

9

B Proofs

B.1 Proofs of Proposition 3.1

Proposition 3.1. The objective function in (3) is multi-convex.

Proof. First, it is straightforward to check that the constraint set lId � Σ1 � uId and lIm � Σ2 �
uIm are convex. For any fixed Σ1 and Σ2, the objective function in terms of W can be expressed as

m∑
i=1

 ni∑
j=1

(yji −wT
i x

j
i)

2 + η||wi||22

+ ρtr(Σ1WΣ2W
T)

The first term decomposes over tasks and for each task vector wi,
∑ni

j=1(yji −wT
i x

j
i)

2 + η||wi||22
is a quadratic function for each wi, so the summation is also convex in W . Since Σ1 ∈ Sd+ and
Σ2 ∈ Sm+ , we can further rewrite the second term above as

ρtr(Σ1WΣ2W
T) = ρtr((Σ1/2

1 WΣ
1/2
2)(Σ

1/2
1 WΣ

1/2
2)T) = ρ||Σ1/2

1 WΣ
1/2
2 ||2F

This is the Frobenius norm of the matrix Σ
1/2
1 WΣ

1/2
2 , which is a linear transformation of W when

both Σ1 and Σ2 are fixed, hence this is also a convex function of W . Overall the objective function
with respect to W when both Ω1 and Ω2 are fixed is convex. For any fixed W and Σ2, consider the
objective function with respect to Σ1:

−ρm log |Σ1|+ ρtr(Σ1C)

where C = WΣ2W
T is a constant matrix. Since log |Σ1| is concave in Σ1 and tr(Σ1C) is a linear

function of Σ1, it directly follows that −ρm log |Σ1| + ρtr(Σ1C) is a convex function of Σ1. A
similar argument can be applied to Σ2 as well. �

B.2 Proof of Proposition 3.2

Proposition 3.2. (5) can be solved in closed form in O(m3d3 +mnd2) time; the optimal vec(W ∗)

has the following form:
(
Im ⊗ (XTX) + ηImd + ρΣ2 ⊗ Σ1

)−1
vec(XTY).

To prove this claim, we need the following facts about tensor product:
Fact B.1. Let A be a matrix. Then ||A||F = ||vec(A)||2.

Fact B.2. Let A ∈ Rm1×n1 , B ∈ Rn1×n2 and C ∈ Rn2×m2 . Then vec(ABC) = (CT ⊗A)vec(B).

Fact B.3. Let S1 ∈ Rm1×n1 , S2 ∈ Rn1×p1 and T1 ∈ Rm2×n2 , T2 ∈ Rn2×p2 . Then (S1⊗S2)(T1⊗
T2) = (S1S2)⊗ (T1T2).
Fact B.4. LetA ∈ Rn×n andB ∈ Rm×m. Let {µ1, . . . , µn} be the spectrum ofA and {ν1, . . . , νm}
be the spectrum of B. Then the spectrum of A⊗B is {µiνj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

we can show the following result by transforming W into its isomorphic counterpart:

Proof.

||Y −XW ||2F + η||W ||2F + ρ||Σ1/2
1 WΣ

1/2
2 ||2F

= ||vec(Y −XW)||22 + η||vec(W)||22 + ρ||vec(Σ
1/2
1 WΣ

1/2
2)||22 (By Fact B.1)

= ||vec(Y)− (Im ⊗X)vec(W)||22 + η||vec(W)||22 + ρ||(Σ1/2
2 ⊗ Σ

1/2
1)vec(W)||22 (By Fact B.2)

= vec(W)T
(

(Im ⊗X)T (Im ⊗X) + ηImd + ρ(Σ
1/2
2 ⊗ Σ

1/2
1)T (Σ

1/2
2 ⊗ Σ

1/2
1)

)
vec(W)

− 2vec(W)T (Im ⊗XT)vec(Y) + vec(Y)T vec(Y)

= vec(W)T
(
(Im ⊗XTX) + ηImd + ρ(Σ2 ⊗ Σ1)

)
vec(W)

− 2vec(W)T (Im ⊗XT)vec(Y) + vec(Y)T vec(Y) (By Fact B.3)

10

The last equation above is a quadratic function of vec(W), from which we can read off that the
optimal solution W ∗ should satisfy:

vec(W ∗) =
(
Im ⊗ (XTX) + ηImd + ρΣ2 ⊗ Σ1

)−1
vec(XTY) (13)

W ∗ can then be obtained simply by reformatting vec(W ∗) into a d×m matrix. The computational
bottleneck in the above procedure is in solving an md×md system of equations, which scales as
O(m3d3) if no further structure is available. The overall computational complexity is O(m3d3 +
mnd2). �

B.3 Proof of Thm. 3.1

To analyze the convergence rate of gradient descent in this case, we start by bounding the smallest
and largest eigenvalue of the quadratic system shown in (??).
Lemma B.1 (Weyl’s inequality). Let A,B and C be n-by-n Hermitian matrices, and C = A+B.
Let a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn be the eigenvalues of A,B and C respectively.
Then the following inequalities hold for r + s− 1 ≤ i ≤ j + k − n, ∀i = 1, . . . , n:

aj + bk ≤ ci ≤ ar + bs

Let λk(A) be the k-th largest eigenvalue of matrix A.
Lemma B.2. If Σ1 and Σ2 are feasible in (4), then

λ1(Im ⊗ (XTX) + ηImd + ρΣ2 ⊗ Σ1) ≤ λ1(XTX) + η + ρu2

λmd(Im ⊗ (XTX) + ηImd + ρΣ2 ⊗ Σ1) ≥ λd(XTX) + η + ρl2

Proof. By Weyl’s inequality, setting r = s = i = 1, we have c1 ≤ a1 + b1. Set j = k = i = n, we
have cn ≥ an + bn. We can bound the largest and smallest eigenvalues of Im ⊗ (XTX) + ηImd +
ρΣ2 ⊗ Σ1 as follows:

λ1(Im ⊗ (XTX) + ηImd + ρΣ2 ⊗ Σ1)

≤ λ1(Im ⊗ (XTX)) + λ1(ηImd) + λ1(ρΣ2 ⊗ Σ1) (By Weyl’s inequality)

= λ1(Im)λ1(XTX) + η + ρλ1(Σ1)λ1(Σ2) (By Fact B.4)

≤ λ1(XTX) + η + ρu2 (By the feasibility assumption)

and

λmd(Im ⊗ (XTX) + ηImd + ρΣ2 ⊗ Σ1)

≥ λmd(Im ⊗ (XTX)) + λmd(ηImd) + λmd(ρΣ2 ⊗ Σ1) (By Weyl’s inequality)

= λm(Im)λd(X
TX) + η + ρλm(Σ1)λd(Σ2) (By Fact B.4)

≥ λd(XTX) + η + ρl2 (By the feasibility assumption)

�

We will first prove the following two lemmas using the fact that the spectral norm of the Hessian
matrix ∇2h(W) is bounded.

Lemma B.3. Let f(W) : Rd×m 7→ R be a twice differentiable function with λ1(∇2f(W)) ≤ L.
L > 0 is a constant. The minimum value of f(W) can be achieved. Let W ∗ = arg minW f(W),
then

f(W ∗) ≤ f(W)− 1

2L
||∇f(W)||2F

Proof. Since f(W) is twice differentiable with λ1(∇2f(W)) ≤ L, by the Lagrangian mean value
theorem, ∀W, W̃ , we can find a value 0 < t(W, W̃) < 1, such that

f(W̃) = f(W) + tr(∇f(W)T (W̃ −W)) +
1

2
vec(W̃ −W)T∇2f(tW + (1− t)W̃)vec(W̃ −W)

≤ f(W) + tr(∇f(W)T (W̃ −W)) +
L

2
||W̃ −W ||2F

11

Since W ∗ achieves the minimum value of f(W), we can use the above result to obtain:

f(W ∗) = inf
W̃
f(W̃)

≤ inf
W̃
f(W) + tr(∇f(W)T (W̃ −W)) +

L

2
||W̃ −W ||2F

= f(W)− 1

2L
||∇f(W)||2F

where the last equation comes from the fact that the minimum of a quadratic function with respect to
W̃ can be achieved at W̃ = W − 1

L∇f(W). �

Lemma B.4. Let f(W) : Rd×m 7→ R be a convex, twice differentiable function with
λ1(∇2f(W)) ≤ L. L > 0 is a constant, then ∀W1,W2:

tr
(
(∇f(W1)−∇f(W2))T (W1 −W2)

)
≥ 1

L
||∇f(W1)−∇f(W2)||2F

Proof. For all W1,W2, we can construct the following two functions:

fW1
(Z) = f(Z)− tr

(
∇f(W1)TZ

)
, fW2

(Z) = f(Z)− tr
(
∇f(W2)TZ

)
Since f(W) is a convex, twice differentiable function with respect to W , it follows that both fW1

(Z)
and fW2

(Z) are convex, twice differentiable functions with respect to Z. The first-order optimality
condition of convex functions gives the following conditions to hold for Z which achieves the
optimality:

∇fW1
(Z) = ∇f(Z)−∇f(W1) = 0, ∇fW2

(Z) = ∇f(Z)− f(W2) = 0

Plug in W1 and W2 into the above optimality conditions respectively. From the first-order opti-
mality condition we know that W1 and W2 achieves the optimal solutions of fW1(Z) and fW2(Z),
respectively.

Now applying Lemma B.3 to fW1
(Z) and fW2

(Z), we have:(
(W2)− tr

(
∇f(W1)TW2

))
−
(
(W1)− tr

(
∇f(W1)TW1

))
≥ 1

2L
||∇f(W1)−∇f(W2)||2F

(
(W1)− tr

(
∇f(W2)TW1

))
−
(
(W2)− tr

(
∇f(W2)TW2

))
≥ 1

2L
||∇f(W1)−∇f(W2)||2F

Adding the above two equations leads to

tr
(
(∇f(W1)−∇f(W2))T (W1 −W2)

)
≥ 1

L
||∇f(W1)−∇f(W2)||2F

�

We can now proceed to show Thm. 3.1.

Theorem 3.1. Let λl = λd(X
TX) + η + ρl2, λu = λ1(XTX) + η + ρu2 and κ = λu/λl, the

condition number. Choose 0 < t ≤ 2/(λu + λl). For all ε > 0, gradient descent with step size t
converges to the optimal solution within O(κ log(1/ε)) steps.

Proof. Define function g(W) as follows:

g(W) = h(W)− λl
2
||W ||2F

Since we have already bounded that λmd(∇2h(W)) ≥ λl, it follows that g(W) is a convex function
and furthermore λ1(∇2g(W)) ≤ λu − λl. Applying Lemma B.4 to g, ∀W1,W2 ∈ Rd×m, we have:

tr
(
(∇g(W1)−∇g(W2))T (W1 −W2)

)
≥ 1

λu − λl
||∇g(W1)−∇g(W2)||2F

12

Plug in∇g(W) = ∇h(W)− λlW into the above inequality and after some algebraic manipulations,
we have:

tr
(
(∇h(W1)−∇h(W2))T (W1 −W2)

)
≥ 1

λu + λl
||∇h(W1)−∇h(W2)||2F+

λuλl
λu + λl

||W1−W2||2F
(14)

Let W ∗ = arg minW h(W). Within each iteration of Alg. 3, we have the update formula as
W+ = W − t∇h(W), we can bound ||W+ −W ∗||2F as follows

||W+ −W ∗||2F = ||W −W ∗ − t∇h(W)||2F
= ||W −W ∗||2F + t2||∇h(W)||2F − 2ttr

(
(W −W ∗)T∇h(W)

)
≤ (1− 2t

λuλl
λu + λl

)||W −W ∗||2F + t(t− 2

λu + λl
)||∇h(W)||2F (By inequality 14)

≤ (1− 2t
λuλl
λu + λl

)||W −W ∗||2F (For 0 < t ≤ 2/(λu + λl))

Apply the above inequality recursively for T times, we have

||W (T) −W ∗||2F ≤ γT ||W (0) −W ∗||2F
where γ = 1− 2t λuλl

λu+λl
. For t = 2/(λu + λl), we have

γ = 1− 4λuλu/(λl + λu)2 =

(
λu − λl
λu + λl

)2

Now pick ∀ε > 0, setting the upper bound γT ||W (0) −W ∗||2F ≤ ε and solve for T , we have

T ≥ log1/γ(C/ε) = O(log1/γ(1/ε)) = O(κ log(1/ε))

where C = ||W (0) −W ∗||2F is a constant, and κ = λu/λl is the condition number. �

The pseudocode of the gradient descent is shown in Alg. 3.

Algorithm 3 Gradient descent with fixed step-size.

Input: Initial W , X , Y and approximation accuracy ε.
1: λu ← λ1(XTX) + η + ρu2.
2: λl ← λd(X

TX) + η + ρl2.
3: Step size t← 2/(λl + λu).
4: while ||∇h(W)||F > ε do
5: W ←W − t

(
XT (Y −XW) + ηW + ρΣ1WΣ2

)
.

6: end while

B.4 Proof of Lemma A.1

Lemma A.1. There exists an optimal solution P to the optimization problem (10) that is a d × d
permutation matrix.

Proof. Note that the optimization problem (10) in terms of P is a linear program with the Birkhoff
polytope being the feasible region. It follows from Thm. A.1 and Thm. A.2 that at least one optimal
solution P is an d× d permutation matrix. �

B.5 Proof of Thm. A.3

Theorem A.3. The minimum value of (10) is equal to the minimum weight of a perfect matching
on G = (Vλ, Vν , E, w). Furthermore, the optimal solution P of (10) can be constructed from the
minimum-weight perfect matching on G.

13

Proof. By Lemma A.1, the optimal value is achieved when P is a permutation matrix. Given a
permutation matrix P , we can understand P as a bijective mapping from the index of rows to the
index of columns. Specifically, construct a permutation πP : [d] → [d] from P as follows. For
each row index i ∈ [d], πP (i) = j iff Pij = 1. It follows that πP is a permutation of [d] since P is
assumed to be a permutation matrix. The objective function in (10) can be written in terms of πP as

λTPν =

d∑
i=1

λiνπP (i)

which is exactly the weight of the perfect matching on G(Vλ, Vν , E, w) given by πP :

w(πP) = w({(i, πP (i)) : 1 ≤ i ≤ d}) =

d∑
i=1

λiνπP (i)

Similarly, in the other direction, given any perfect matching π : [d] → [d] on the bipartite graph
G(Vλ, Vν , E, w), we can construct a corresponding permutation matrix Pπ: Pπ,ij = 1 iff π(i) = j,
otherwise 0. Since π is a perfect matching, the constructed Pπ is guaranteed to be a permutation
matrix.

Hence the problem of finding the optimal value of (10) is equivalent to finding the minimum weight
perfect matching on the constructed bipartite graphG(Vλ, Vν , E, w). Note that the above constructive
process also shows how to recover the optimal permutation matrix Pπ∗ from the minimum weight
perfect matching π∗. �

B.6 Proof of Thm. A.4

Note that λ = (λ1, . . . , λd) and ν = (ν1, . . . , νd) are assumed to satisfy λ1 ≥ · · · ≥ λd and
ν1 ≤ · · · ≤ νd. To make the discussion more clear, we first make the following definition of an
inverse pair.
Definition B.1 (Inverse pair). Given a perfect match π of G(Vλ, Vν , E, w), (λi, λj , νk, νl) is called
an inverse pair if i ≤ j, k ≤ l and (vλi

, vνl) ∈ π, (vλj
, vνk) ∈ π.

Lemma B.5. Given a perfect match π of G(Vλ, Vν , E, w) and assuming π contains an inverse
pair (λi, λj , νk, νl). Construct π′ = π\{(vλi

, vνl), (vλj
, vνk)} ∪ {((vλi

, vνk), (vλj
, vνl)}. Then

w(π′) ≤ w(π).

Proof. Let us compare the weights of π and π′. Note that since i ≤ j, k ≤ l, we have λi ≥ λj and
νk ≤ νl.

w(π′)− w(π) = (λiνk + λjνl)− (λiνl + λjνk)

= (λi − λj)(νk − νl)
≤ 0

Intuitively, this lemma says that we can always decrease the weight of a perfect matching by re-

λi λj

νk νl

λi λj

νk νl

Figure 3: Re-matching an inverse pair (λi, λj , νk, νl) = {(vλi , vνl), (vλj , vνk)} on the left side to a
match with smaller weight {(vλi

, vνk), (vλj
, vνl)}. Red color is used to highlight edges in the perfect

matching.

matching an inverse pair. Fig. 3 illustrates this process. It is worth emphasizing here that the above
re-matching process only involves four nodes, i.e., vλi

, vνl , vλj
and vνk . In other words, the other

parts of the matching stay unaffected. �

14

Using Lemma B.5, we are now ready to prove Thm. A.4:
Theorem A.4. Let λ = (λ1, . . . , λd) and ν = (ν1, . . . , νd) with λ1 ≥ · · · ≥ λd and ν1 ≤ · · · ≤ νd.
The minimum-weight perfect matching on G is π∗ = {(vλi

, vνi) : 1 ≤ i ≤ d} with the minimum
weight w(π∗) =

∑d
i=1 λiνi.

Proof. We will prove by induction.

• Base case. The base case is d = 2. In this case there are only two valid perfect
matchings, i.e., {(vλ1

, vν1), (vλ2
, vν2)} or {(vλ1

, vν2), (vλ2
, vν1)}. Note that the sec-

ond perfect matching {(vλ1 , vν2), (vλ2 , vν1)} is an inverse pair. Hence by Lemma B.5,
w({(vλ1 , vν1), (vλ2 , vν2)}) = λ1ν1 + λ2ν2 ≤ λ1ν2 + λ2ν1 = w({(vλ1 , vν2), (vλ2 , vν1)}).

• Induction step. Assume Thm. A.4 holds for d = n. Consider the case when d = n + 1.
Start from any perfect matching π. Check the matches of node vλn+1

and vνn+1
. Here we

have two subcases to discuss:

– If vλn+1 is matched to vνn+1 in π. Then we can remove nodes vλn+1 and vνn+1 from
current graph, and this reduces to the case when n = d. By induction assumption, the
minimum weight perfect matching on the new graph is given by

∑n
i=1 λiνi, so the

minimum weight on the original graph is
∑n
i=1 λiνi + λn+1νn+1 =

∑n+1
i=1 λiνi.

– If vλn+1
is not matched to vνn+1

in π. Let vνj be the match of vλn+1
and vλi

be the
match of vνn+1

, where i 6= n+ 1 and j 6= n+ 1. In this case we have i < n+ 1 and
j < n+ 1, so (λi, λn+1, νj , νn+1) forms an inverse pair by definition. By Lemma B.5,
we can first re-match vλn+1 to vνn+1 and vλi to vνj to construct a new match π′ with
w(π′) ≤ w(π). In the new matching π′ we have the property that vλn+1

is matched to
vνn+1 , and this becomes the above case that we have already analyzed, so we still have
the minimum weight perfect matching to be

∑n+1
i=1 λiνi.

Intuitively, as shown in Fig. 3, an inverse pair corresponds to a cross in the matching graph. The
above inductive proof basically works from right to left to recursively remove inverse pairs (crosses)
from the matching graph. Each re-matching step in the proof will decrease the number of inverse
pairs at least by one. The whole process stops until there is no inverse pair in the current perfect
matching. Since the total number of possible inverse pairs, the above process can stop in finite steps.
We illustrate the process of removing inverse pairs in Fig. 4. �

λ1 λ2 · · · λd

ν1 ν2 · · · νd

λ1 λ2 · · · λd

ν1 ν2 · · · νd

λ1 λ2 · · · λd

ν1 ν2 · · · νd

Figure 4: The inductive proof works by recursively removing inverse pairs from the right side of the
graph to the left side of the graph. The process stops until there is no inverse pair in the matching.
Red color is used to highlight edges in the perfect matching.

15

	Introduction
	Multitask Feature and Relationship Learning
	Multi-convex Optimization
	Optimization w.r.t. W
	Optimization w.r.t. 1 and 2

	Experiments
	Convergence Analysis
	Results on Benchmark Datasets

	Conclusion
	Derivation on Solving Covariance Matrices
	Proofs
	Proofs of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Thm. 3.1
	Proof of Lemma A.1
	Proof of Thm. A.3
	Proof of Thm. A.4

