

Efficient Multitask Feature and Relationship Learning

Han Zhao, Otilia Stretcu, Renato Negrinho, †Alex Smola and Geoff Gordon {han.zhao, ostretcu, negrinho, ggordon}@cs.cmu.edu, †alex@smola.org Machine Learning Department. Carnegie Mellon University. †Amazon

Motivation

Multitask Learning:

- Multiple linear regression models
- · Weight matrix:
- ► rows = tasks
- ► columns = features
- Goal:
- ▶ Joint learning multiple tasks
- ▶ Better generalization with less data
- ► Find correlation between tasks/features

Formulation

Empirical Bayes with prior:

$$W \mid \xi, \Omega_1, \Omega_2 \sim \left(\prod_{i=1}^m \mathcal{N}(\mathbf{w}_i \mid \mathbf{0}, \xi_i \mathbf{I}_d)\right) \cdot \mathcal{M} \mathcal{N}_{d \times m}(W \mid \mathbf{0}_{d \times m}, \Omega_1, \Omega_2)$$

- $\mathcal{MN}_{d\times m}(W \mid \mathbf{0}_{d\times m}, \Omega_1, \Omega_2)$ is matrix-variate normal distribution
- $\Omega_1 \in \mathbb{S}^d_{++}$, covariance matrix over features
- $\Omega_2 \in \mathbb{S}^m_{++}$, covariance matrix over tasks
- $W \in \mathbb{R}^{d \times m}$, weight matrix

Maximum marginal-likelihood with empirical estimators:

$$\begin{aligned} & \underset{W,\Sigma_{1},\Sigma_{2}}{\text{minimize}} & & ||Y-XW||_{F}^{2} + \eta ||W||_{F}^{2} + \rho ||\Sigma_{1}^{1/2}W\Sigma_{2}^{1/2}||_{F}^{2} \\ & & - \rho (m \log |\Sigma_{1}| + d \log |\Sigma_{2}|) \\ & \text{subject to} & & lI_{d} \preceq \Sigma_{1} \preceq uI_{d}, lI_{m} \preceq \Sigma_{2} \preceq uI_{m} \end{aligned}$$

- $\Sigma_1 := \Omega_1^{-1}, \Sigma_2 := \Omega_2^{-1}$
- Multi-convex in W, Σ_1, Σ_2

Optimization Algorithm

Solvers for W when Σ_1 , Σ_2 are fixed:

minimize
$$h(W) \triangleq ||Y - XW||_F^2 + \eta ||W||_F^2 + \rho ||\Sigma_1^{1/2} W \Sigma_2^{1/2}||_F^2$$

Three different solvers:

- A closed form solution with $O(m^3d^3 + mnd^2)$ complexity: $\operatorname{vec}(W^*) = \left(I_m \otimes (X^TX) + \eta I_{md} + \rho \Sigma_2 \otimes \Sigma_1\right)^{-1} \operatorname{vec}(X^TY)$
- Gradient computation:

$$\nabla_W h(W) = X^T (Y - XW) + \eta W + \rho \Sigma_1 W \Sigma_2$$

Conjugate gradient descent with $O(\sqrt{\kappa}\log(1/\varepsilon)(m^2d+md^2))$ complexity, κ is the condition number, ε is the approximation accuracy

ullet Sylvester equation AX + XB = C using the Bartels-Stewart solver. The first-order optimality condition:

$$\Sigma_1^{-1}(X^TX + \eta I_d)W + W(\rho \Sigma_2) = \Sigma_1^{-1}X^TY$$

Exact solution for W computable in $O(m^3 + d^3 + nd^2)$ time.

Solvers for Σ_1 and Σ_2 when W is fixed:

 $\begin{array}{ll} \underset{\Sigma_1}{\text{minimize}} & \text{tr}(\Sigma_1 W \Sigma_2 W^T) - m \log |\Sigma_1|, & \text{subject to} & lI_d \preceq \Sigma_1 \preceq uI_d \\ \\ \underset{\Sigma_2}{\text{minimize}} & \text{tr}(\Sigma_1 W \Sigma_2 W^T) - d \log |\Sigma_2|, & \text{subject to} & lI_d \preceq \Sigma_2 \preceq uI_d \\ \end{array}$

Exact solution by reduction to minimum-weight perfect matching:

Algorithms:

Input: W, Σ_2 and l, u.

1: $[V, \nu] \leftarrow \text{SVD}(W\Sigma_2 W^T)$.

2: $\lambda \leftarrow \mathbb{T}_{[l,u]}(m/\nu)$.

3: $\Sigma_1 \leftarrow V \operatorname{diag}(\lambda) V^T$.

Input: W, Σ_1 and l, u.

1: $[V, \nu] \leftarrow \text{SVD}(W^T \Sigma_1 W)$.

2: $\lambda \leftarrow \mathbb{T}_{[l,u]}(d/\nu)$.

3: $\Sigma_2 \leftarrow V \operatorname{diag}(\lambda) V^T$.

- · Exact solution only requires one SVD
- Time complexity: $O(\max\{dm^2, md^2\})$

Experiments

Convergence analysis:

- · Synthetic data:
- ▶ The closed form solution does not scale when $md > 10^4$.
- · Robot data:
- ▶ d = 21 (7 joint positions, 7 joint velocities, 7 joint accelerations), m = 7 (7 joint torques).
- ► #Train/#Test = 44,484/4,449 instances.
- School data:
- \rightarrow d = 27, m = 139, n = 15, 362 instances.
- ► Goal: students' score prediction.

(a) Covariance matrix over features.

(b) Covariance matrix over tasks.

	SARCOS							School
Method	1st	2nd	3rd	4th	5th	6th	7th	MNMSE
STL	31.40	22.90	9.13	10.30	0.14	0.84	0.46	0.9882 ± 0.0196
MTFL	31.41	22.91	9.13	10.33	0.14	0.83	0.45	0.8891 ± 0.0380
MTRL	31.09	22.69	9.08	9.74	0.14	0.83	0.44	0.9007 ± 0.0407
SPARSE	31.13	22.60	9.10	9.74	0.13	0.83	0.45	0.8451 ± 0.0197
FETR	31.08	22.68	9.08	9.73	0.13	0.83	0.43	0.8134 ± 0.0253